METU, Fall 2011, Math 523. Homework 2

(due October 12)

- 1. Let L/K be a finite field extension in complex numbers and let α be a nonzero element in L. If $f(x) \in K[x]$ is a monic polynomial of smallest degree such that $f(\alpha) = 0$ then show that f(x) is unique and irreducible.
- 2. Let f(x) be a polynomial of degree *n* over *K* (not necessarily irreducible) and let *L* be the splitting field for *f* over *K*. By definition $L = K(\alpha_1, \ldots, \alpha_n)$ where $\alpha_i \in \mathbf{C}$ are roots of f(x).
 - Explain briefly why L/K is normal.
 - Show that [L:K] divides n!.
- 3. Let $\zeta_7 = e^{2\pi i/7}$ and consider $L = \mathbf{Q}(\zeta_7)$, the 7-th cyclotomic field. Let K be its unique subfield such that [L : K] = 3. Does there exist an element $\alpha \in L \setminus K$ such that $\alpha^3 \in K$? (Hint: You may use the fact that $\operatorname{Gal}(\mathbf{Q}(\zeta_m)/\mathbf{Q}) \cong (\mathbf{Z}/m\mathbf{Z})^{\times}$.)
- 4. Let $K = \mathbf{Q}(\alpha, \beta)$ where $\alpha^4 2 = 0$ and $\beta^2 + 1 = 0$.
 - Show that $[K : \mathbf{Q}] = 8$.
 - Show that K/\mathbf{Q} is normal and determine $\operatorname{Gal}(K/\mathbf{Q})$.
 - List all subfields of K using the Galois correspondence.
- 5. Construct a field $\mathbf{F}_{16} \cong R/\mathfrak{m}$ with 16 elements by choosing a ring R and a maximal ideal $\mathfrak{m} \subset R$ suitably.
 - Determine an element $r \in R$ such that the corresponding element in \mathbf{F}_{16} generates the multiplicative group \mathbf{F}_{16}^{\times} .
 - Similarly construct a field \mathbf{F}_8 with 8 elements. Find an embedding φ from \mathbf{F}_8 into \mathbf{F}_{16} . How many different embeddings are there?
 - Is there a nontrivial automorphism of \mathbf{F}_{16} fixing the subfield $\varphi(\mathbf{F}_8)$ pointwise?