METU, Fall 2011, Math 523.

Homework 10

1. Let L / K be a Galois extension with Galois group $G=\operatorname{Gal}(L / K)$. Let $\mathfrak{P} \subset \mathcal{O}_{L}$ be a prime ideal lying over $\mathfrak{p} \subset \mathcal{O}_{K}$ such that $e(\mathfrak{P} \mid \mathfrak{p})=1$.

- If $\sigma \in G$, then show that $\left(\frac{L / K}{\sigma(\mathfrak{P})}\right)=\sigma\left(\frac{L / K}{\mathfrak{P}}\right) \sigma^{-1}$.
- Explain why the order of Artin symbol $\left(\frac{L / K}{\mathfrak{P}}\right)$ is $f(\mathfrak{P} \mid \mathfrak{p})$.
- Prove that \mathfrak{p} splits completely in L if and only if $\left(\frac{L / K}{\mathfrak{P}}\right)=1_{G}$.

2. Let $K=\mathbf{Q}\left(\sqrt[3]{2}, \zeta_{3}\right)$. Recall that K / \mathbf{Q} is normal and $\operatorname{Gal}(K / \mathbf{Q}) \cong S_{3}$.

- Show that 2 and 3 are the only primes in \mathbf{Z} which ramify in K.
- Let $\mathfrak{P} \subset \mathcal{O}_{K}$ be a prime ideal lying over 7 . Find $N(\mathfrak{P})$.
- Show that $\left(\frac{K / \mathbf{Q}}{\mathfrak{P}}\right)\left(\zeta_{3}\right)=\zeta_{3}$.
- Evaluate $N_{\mathbf{Q}}^{K}\left(5+\zeta_{3}\right)$. If $5+\zeta_{3} \in \mathfrak{P}$, then find $\left(\frac{K / \mathbf{Q}}{\mathfrak{P}}\right)(\sqrt[3]{2})$.

3. Let $K=\mathbf{Q}(i)$ and let p be an odd prime. Show that p splits in K if and only if

$$
\left(\frac{d_{K}}{p}\right)=1
$$

Let $\mathfrak{p}=(\pi)$ be a prime ideal of \mathcal{O}_{K} lying over p generated by $\pi \in \mathcal{O}_{K}$. What is $N_{\mathbf{Q}}^{K}(\pi)$? Prove that an odd prime $p=x^{2}+y^{2}$ if and only if $p \equiv 1(\bmod 4)$.
4. Let n be a nonzero integer, and let p be an odd prime not dividing n. Then $p \mid x^{2}+n y^{2}$ where $\operatorname{gcd}(x, y)=1$ if and only if $\left(\frac{-n}{p}\right)=1$.
5. Let $K=\mathbf{Q}(\sqrt{-5})$. Verify that $H=K(\sqrt{5})$ is the Hilbert class field of K, i.e. maximal unramified abelian extension of K (Hint: $\mathrm{Cl}(K) \cong \operatorname{Gal}(H / K))$. Show that

$$
\left\{\begin{array}{c}
\left(\frac{-5}{p}\right)=1 \text { and } x^{2}-5=0 \text { has } \\
\text { an integer solution modulo } p .
\end{array}\right\} \Longleftrightarrow p \equiv 1,9(\bmod 20) .
$$

