METU, Fall 2011, Math 523. Homework 10

- 1. Let L/K be a Galois extension with Galois group G = Gal(L/K). Let $\mathfrak{P} \subset \mathcal{O}_L$ be a prime ideal lying over $\mathfrak{p} \subset \mathcal{O}_K$ such that $e(\mathfrak{P}|\mathfrak{p}) = 1$.
 - If $\sigma \in G$, then show that $\left(\frac{L/K}{\sigma(\mathfrak{P})}\right) = \sigma\left(\frac{L/K}{\mathfrak{P}}\right)\sigma^{-1}$.
 - Explain why the order of Artin symbol $\left(\frac{L/K}{\mathfrak{P}}\right)$ is $f(\mathfrak{P}|\mathfrak{p})$.
 - Prove that \mathfrak{p} splits completely in L if and only if $\left(\frac{L/K}{\mathfrak{P}}\right) = 1_G$.

2. Let $K = \mathbf{Q}(\sqrt[3]{2}, \zeta_3)$. Recall that K/\mathbf{Q} is normal and $\operatorname{Gal}(K/\mathbf{Q}) \cong S_3$.

- Show that 2 and 3 are the only primes in \mathbf{Z} which ramify in K.
- Let $\mathfrak{P} \subset \mathcal{O}_K$ be a prime ideal lying over 7. Find $N(\mathfrak{P})$.
- Show that $\left(\frac{K/\mathbf{Q}}{\mathfrak{P}}\right)(\zeta_3) = \zeta_3.$
- Evaluate $N_{\mathbf{Q}}^{K}(5+\zeta_{3})$. If $5+\zeta_{3} \in \mathfrak{P}$, then find $(\frac{K/\mathbf{Q}}{\mathfrak{P}})(\sqrt[3]{2})$.
- 3. Let $K = \mathbf{Q}(i)$ and let p be an odd prime. Show that p splits in K if and only if

$$\left(\frac{d_K}{p}\right) = 1.$$

Let $\mathfrak{p} = (\pi)$ be a prime ideal of \mathcal{O}_K lying over p generated by $\pi \in \mathcal{O}_K$. What is $N_{\mathbf{Q}}^K(\pi)$? Prove that an odd prime $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$.

- 4. Let n be a nonzero integer, and let p be an odd prime not dividing n. Then $p|x^2 + ny^2$ where gcd(x, y) = 1 if and only if $\left(\frac{-n}{p}\right) = 1$.
- 5. Let $K = \mathbf{Q}(\sqrt{-5})$. Verify that $H = K(\sqrt{5})$ is the Hilbert class field of K, i.e. maximal unramified abelian extension of K (Hint: $\operatorname{Cl}(K) \cong \operatorname{Gal}(H/K)$). Show that

$$\left\{\begin{array}{c} \left(\frac{-5}{p}\right) = 1 \text{ and } x^2 - 5 = 0 \text{ has} \\ \text{an integer solution modulo } p. \end{array}\right\} \iff p \equiv 1,9 \pmod{20}$$