METU, Fall 2011, Math 523.

 Homework 1

 Homework 1
 (due October 5)

1. Let R be a ring (i.e. a commutative ring with identity). Show that

- Every maximal ideal of R is a prime ideal.
- An ideal $I \subset R$ is maximal $\Leftrightarrow R / I$ is a field.
- An ideal $I \subset R$ is prime $\Leftrightarrow R / I$ is an integral domain.

2. We know that $R[x]$ is a principal ideal domain if R is a field (because the division algorithm works). What about the converse? If $R[x]$ is a principal ideal domain, what can you say about R ? Is it necessarily a field?
3. Set $w=(\sqrt{-23}+1) / 2$ and consider the ring $\mathcal{O}=\mathbf{Z}[w]$. Let $\mathfrak{a} \subset \mathcal{O}$ be an ideal generated by 2 and w. Determine for each $n \in\{1,2,3\}$ if \mathfrak{a}^{n} is principal or not?
4. Let R be a principal ideal domain. If $\mathfrak{p} \subset R$ is a prime ideal then prove that the quotient R / \mathfrak{p} is also a principal ideal domain. Can you drop the primeness condition on the ideal \mathfrak{p} and still have the same property?
5. The product of two ideals I and J consists of all finite sums of products $i j$ where $i \in I$ and $j \in J$. Prove that

$$
I \cdot J=I \cap J
$$

if I and J are relatively prime. Is the above equality still true if we drop the condition of being relatively prime on ideals I and J ?

