METU, Fall 2011, Math 523. Homework 1

(due October 5)

- 1. Let R be a ring (i.e. a commutative ring with identity). Show that
 - Every maximal ideal of R is a prime ideal.
 - An ideal $I \subset R$ is maximal $\Leftrightarrow R/I$ is a field.
 - An ideal $I \subset R$ is prime $\Leftrightarrow R/I$ is an integral domain.
- 2. We know that R[x] is a principal ideal domain if R is a field (because the division algorithm works). What about the converse? If R[x] is a principal ideal domain, what can you say about R? Is it necessarily a field?
- 3. Set $w = (\sqrt{-23} + 1)/2$ and consider the ring $\mathcal{O} = \mathbb{Z}[w]$. Let $\mathfrak{a} \subset \mathcal{O}$ be an ideal generated by 2 and w. Determine for each $n \in \{1, 2, 3\}$ if \mathfrak{a}^n is principal or not?
- 4. Let R be a principal ideal domain. If $\mathfrak{p} \subset R$ is a prime ideal then prove that the quotient R/\mathfrak{p} is also a principal ideal domain. Can you drop the primeness condition on the ideal \mathfrak{p} and still have the same property?
- 5. The product of two ideals I and J consists of all finite sums of products ij where $i \in I$ and $j \in J$. Prove that

$$I \cdot J = I \cap J$$

if I and J are relatively prime. Is the above equality still true if we drop the condition of being relatively prime on ideals I and J?