M E T U Department of Mathematics

Group	Algel	oraic Number Theory	List No.
		Midterm 2	
Acad. Year Semester		Name : Last Name : Signature :	
Date Time Duration	: Dec 6, 2011 : 10:40 : 110 minutes	7 QUESTIONS ON 4 PAGE 60 TOTAL POINTS	6
1 2	3 4 5 6	7	

- 1. (12pts) Let K and L be distinct quadratic number fields.
 - Show that $K = \mathbf{Q}(\sqrt{m})$ for some squarefree integer $m \in \mathbf{Z}$. (Hint: Pick $\alpha \in K \setminus \mathbf{Q}$ and construct \sqrt{m} in terms of α .)

• Give an example of K and L such that $\mathcal{O}_{KL} \neq \mathcal{O}_K \mathcal{O}_L$.

• Is the extension KL/\mathbf{Q} normal? If so, what is the Galois group?

2. (8pts) Let R be a Dedekind domain. If R is a UFD, then show that it is a PID.

3. (8pts) Let α be a complex number such that $\alpha^3 = -(\alpha + 1)$. Set $K = \mathbf{Q}(\alpha)$. Give an integral basis for \mathcal{O}_K and compute the discriminant d_K . Find the ideal prime decomposition of the ideal $(31) \subset \mathcal{O}_K$. (Hint: $3^3 = -(3+1) \pmod{31}$.)

4. (8pts) Explain briefly why the ring of Gaussian integers $\mathbf{Z}[i]$ is a Dedekind domain and find the ideal prime decomposition of $\mathfrak{a} = (30, 21 + 3i)$.

5. (8pts) Let $\alpha = \sqrt[3]{19}$ and $\beta = 6/(\sqrt[3]{19} - 1)$ be elements of $L = \mathbf{Q}(\sqrt[3]{19})$. You are given that $\{1, \alpha, \beta\}$ is an integral basis for L. Show that $[\mathcal{O}_L : \mathbf{Z}[\alpha]] = 3$ and $[\mathcal{O}_L : \mathbf{Z}[\beta]]$ is not divisible by 3. Find the ideal prime decomposition of ideals (2), (3) and (5) in L.

6. (6pts) Let L/K be a normal extension of number fields. Let \mathfrak{P} be a prime of \mathcal{O}_L lying over \mathfrak{p} of \mathcal{O}_K .

- Give the definitions of decomposition and inertia groups:
 - $D(\mathfrak{P}|\mathfrak{p}) =$
 - $I(\mathfrak{P}|\mathfrak{p}) =$
- Explain briefly why D/I is cyclic.

- 7. (10pts) Let $L = \mathbf{Q}(\sqrt[3]{5}, \sqrt{-3}).$
 - Show that L is the splitting field of $x^3 5$ over **Q**.

• Prove that L/\mathbf{Q} is a normal extension with Galois group isomorphic to S_3 .

• Let \mathfrak{P} be a prime ideal of \mathcal{O}_L lying over $(5) \subset \mathbb{Z}$. - Compute the ramification index $e(\mathfrak{P}|(5))$ and the residual degree $f(\mathfrak{P}|(5))$.

- Determine the cardinality of the groups $D(\mathfrak{P}|(5))$ and $I(\mathfrak{P}|(5))$.