M ETU

Department of Mathematics

Group	Algebraic Number Theory Midterm 2			List No.
Code Acad. Year Semester Instructor	: Math 523 : 2011 : Fall : Küçüksakallı	Name Last Name Signature		
Date Time Duration	$\begin{aligned} & : \text { Dec 6, } 2011 \\ & : 10: 40 \\ & : 110 \text { minutes } \end{aligned}$		$\begin{gathered} 7 \text { QUESTIOI } \\ 60 \text { TOT } \end{gathered}$	
$1{ }^{1}$	$\left.\right\|^{4}{ }^{5}$			

1. (12pts) Let K and L be distinct quadratic number fields.

- Show that $K=\mathbf{Q}(\sqrt{m})$ for some squarefree integer $m \in \mathbf{Z}$. (Hint: Pick $\alpha \in K \backslash \mathbf{Q}$ and construct \sqrt{m} in terms of α.)
- Give an example of K and L such that $\mathcal{O}_{K L} \neq \mathcal{O}_{K} \mathcal{O}_{L}$.
- Is the extension $K L / \mathbf{Q}$ normal? If so, what is the Galois group?

2. (8pts) Let R be a Dedekind domain. If R is a UFD, then show that it is a PID.
3. (8pts) Let α be a complex number such that $\alpha^{3}=-(\alpha+1)$. Set $K=\mathbf{Q}(\alpha)$. Give an integral basis for \mathcal{O}_{K} and compute the discriminant d_{K}. Find the ideal prime decomposition of the ideal $(31) \subset \mathcal{O}_{K} .\left(\right.$ Hint: $\left.3^{3}=-(3+1)(\bmod 31).\right)$
4. (8pts) Explain briefly why the ring of Gaussian integers $\mathbf{Z}[i]$ is a Dedekind domain and find the ideal prime decomposition of $\mathfrak{a}=(30,21+3 i)$.
5. (8pts) Let $\alpha=\sqrt[3]{19}$ and $\beta=6 /(\sqrt[3]{19}-1)$ be elements of $L=\mathbf{Q}(\sqrt[3]{19})$. You are given that $\{1, \alpha, \beta\}$ is an integral basis for L. Show that $\left[\mathcal{O}_{L}: \mathbf{Z}[\alpha]\right]=3$ and $\left[\mathcal{O}_{L}: \mathbf{Z}[\beta]\right]$ is not divisible by 3 . Find the ideal prime decomposition of ideals (2), (3) and (5) in L.
6. (6pts) Let L / K be a normal extension of number fields. Let \mathfrak{P} be a prime of \mathcal{O}_{L} lying over \mathfrak{p} of \mathcal{O}_{K}.

- Give the definitions of decomposition and inertia groups:
$-D(\mathfrak{P} \mid \mathfrak{p})=$
$-I(\mathfrak{P} \mid \mathfrak{p})=$
- Explain briefly why D / I is cyclic.

7. (10pts) Let $L=\mathbf{Q}(\sqrt[3]{5}, \sqrt{-3})$.

- Show that L is the splitting field of $x^{3}-5$ over \mathbf{Q}.
- Prove that L / \mathbf{Q} is a normal extension with Galois group isomorphic to S_{3}.
- Let \mathfrak{P} be a prime ideal of \mathcal{O}_{L} lying over $(5) \subset \mathbf{Z}$.
- Compute the ramification index $e(\mathfrak{P} \mid(5))$ and the residual degree $f(\mathfrak{P} \mid(5))$.
- Determine the cardinality of the groups $D(\mathfrak{P} \mid(5))$ and $I(\mathfrak{P} \mid(5))$.

