M E T U Department of Mathematics

Group	Algebraic Number Theory							List No.
	Midterm 1							
Code Acad. Year Semester Instructor	: Math 523 : 2011 : Fall : Küçüksakallı : Nov. 1. 2011		llı 1	Last N Name Depart Signate	ame : : ment : ure :		Student No Section). : :
Time Duration	: 10:4 : 110	1, 201 0 minute	28	6 QUESTIONS ON 4 PAGES 60 TOTAL POINTS				5
1 2	3	4	5 6					

1. (12pts) Let K and L be number fields. Determine for each of the following statements if it is true or not.

• (4pts) $K \cap L = \mathbf{Q}$ if and only if $gcd(d_K, d_L) = 1$.

(4pts) If K = Q[α] for some algebraic integer α, then Z[α] is an additive subgroup of O_K with finite index.

• (4pts) $\mathcal{O}_{KL} = \mathcal{O}_K \mathcal{O}_L$.

2. (8pts) Let $R = \mathbf{Z}[x]/(2, x^3 + x + 1)$ and $S = \mathbf{Z}[t]/(2, t^4 + t^3 + t^2 + t + 1)$. Prove that R and S are both fields. Is it possible to write a ring homomorphism $\phi : R \to S$ or $\psi : S \to R$?

3. (8pts) Let $\zeta_7 = e^{2\pi i/7}$ and consider $L = \mathbf{Q}(\zeta_7)$, the 7-th cyclotomic field. Let K be its unique subfield such that [L:K] = 3. Does there exist an element $\alpha \in L \setminus K$ such that $\alpha^3 \in K$?

4. (8pts) Let $f(x) = x^3 + ax + b$ be an irreducible polynomial over **Z**. If α is a root of f(x) and $K = \mathbf{Q}(\alpha)$, then calculate $T_{\mathbf{Q}}^K(\alpha^i)$ for $i \in \{0, 1, 2, 3\}$ and $N_{\mathbf{Q}}^K(\alpha - j)$ for $j \in \{0, 1, 2\}$.

5. (8pts) Let p be an odd prime. Show that $\operatorname{disc}(1, \zeta_p, \ldots, \zeta_p^{p-2}) = \pm p^{p-2}$ where plus sign holds if and only if $p \equiv 1 \pmod{4}$. Show that $\mathbf{Q}(\zeta_p)$ has a unique subfield K such that $[K : \mathbf{Q}] = 2$. Find an element α such that $K = \mathbf{Q}(\alpha)$.

- 6. (16pts) Let K be a quadratic number field. (In other words $[K : \mathbf{Q}] = 2$.)
 - Show that $K = \mathbf{Q}(\sqrt{m})$ for some squarefree integer $m \in \mathbf{Z}$.

• Let \mathcal{O}_K be the set of algebraic integers in K. Prove that

$$\mathcal{O}_{K} = \begin{cases} \{a + b\sqrt{m} : a, b \in \mathbf{Z}\} & \text{if } m \equiv 2, 3 \pmod{4}, \\ \{(a + b\sqrt{m})/2 : a, b \in \mathbf{Z}, \ a \equiv b \pmod{2}\} & \text{if } m \equiv 1 \pmod{4}. \end{cases}$$

• Find an integral basis for \mathcal{O}_K and compute the discriminant d_K .

• Define $w = (\sqrt{d_K} + d_K)/2$. Show that $\mathcal{O}_K = \mathbf{Z}[w]$.