M ETU

Department of Mathematics

Group	Algebraic Number Theory Midterm 1			List No.
Code Acad. Year Semester Instructor	: Math 523 : 2011 : Fall : Küçüksakallı	$\begin{array}{ll}\text { Last Name }: \\ \text { Name } & : \\ \text { Department } \\ \text { Signature } & :\end{array}$	Student Section	: :
Date Time Duration	$\begin{aligned} & : \text { Nov 1, } 2011 \\ & : 10: 40 \\ & : 110 \text { minutes } \\ & \hline \end{aligned}$	$\begin{gathered} 6 \text { QUESTIONS ON } 4 \text { PAGES } \\ 60 \text { TOTAL POINTS } \\ \hline \end{gathered}$		
$1{ }^{2}$				

1. (12pts) Let K and L be number fields. Determine for each of the following statements if it is true or not.

- (4pts) $K \cap L=\mathbf{Q}$ if and only if $\operatorname{gcd}\left(d_{K}, d_{L}\right)=1$.
- (4pts) If $K=\mathbf{Q}[\alpha]$ for some algebraic integer α, then $\mathbf{Z}[\alpha]$ is an additive subgroup of \mathcal{O}_{K} with finite index.
- (4pts) $\mathcal{O}_{K L}=\mathcal{O}_{K} \mathcal{O}_{L}$.

2. (8pts) Let $R=\mathbf{Z}[x] /\left(2, x^{3}+x+1\right)$ and $S=\mathbf{Z}[t] /\left(2, t^{4}+t^{3}+t^{2}+t+1\right)$. Prove that R and S are both fields. Is it possible to write a ring homomorphism $\phi: R \rightarrow S$ or $\psi: S \rightarrow R$?
3. (8pts) Let $\zeta_{7}=e^{2 \pi i / 7}$ and consider $L=\mathbf{Q}\left(\zeta_{7}\right)$, the 7-th cyclotomic field. Let K be its unique subfield such that $[L: K]=3$. Does there exist an element $\alpha \in L \backslash K$ such that $\alpha^{3} \in K$?
4. (8pts) Let $f(x)=x^{3}+a x+b$ be an irreducible polynomial over \mathbf{Z}. If α is a root of $f(x)$ and $K=\mathbf{Q}(\alpha)$, then calculate $T_{\mathbf{Q}}^{K}\left(\alpha^{i}\right)$ for $i \in\{0,1,2,3\}$ and $N_{\mathbf{Q}}^{K}(\alpha-j)$ for $j \in\{0,1,2\}$.
5. (8pts) Let p be an odd prime. Show that $\operatorname{disc}\left(1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}\right)= \pm p^{p-2}$ where plus sign holds if and only if $p \equiv 1(\bmod 4)$. Show that $\mathbf{Q}\left(\zeta_{p}\right)$ has a unique subfield K such that $[K: \mathbf{Q}]=2$. Find an element α such that $K=\mathbf{Q}(\alpha)$.
6. (16pts) Let K be a quadratic number field. (In other words $[K: \mathbf{Q}]=2$.)

- Show that $K=\mathbf{Q}(\sqrt{m})$ for some squarefree integer $m \in \mathbf{Z}$.
- Let \mathcal{O}_{K} be the set of algebraic integers in K. Prove that

$$
\mathcal{O}_{K}= \begin{cases}\{a+b \sqrt{m}: a, b \in \mathbf{Z}\} & \text { if } m \equiv 2,3(\bmod 4) \\ \{(a+b \sqrt{m}) / 2: a, b \in \mathbf{Z}, a \equiv b(\bmod 2)\} & \text { if } m \equiv 1(\bmod 4)\end{cases}
$$

- Find an integral basis for \mathcal{O}_{K} and compute the discriminant d_{K}.
- Define $w=\left(\sqrt{d_{K}}+d_{K}\right) / 2$. Show that $\mathcal{O}_{K}=\mathbf{Z}[w]$.

