M E T U Department of Mathematics

Group	Alge	braic Number Theory	List No.
		Final	
Code Acad. Year Semester Instructor	: Math 523 : 2011 : Fall : Küçüksakallı	Name:Last Name:Signature:	
Date Time Duration	: 10/01/2011 : 10:01 : 180_minutes	8 QUESTIONS ON 6 PAGES 80 TOTAL POINTS	3
1 2	3 4 5 6	7	

1. (6pts) If $\{\alpha_1, \ldots, \alpha_n\}$ and $\{\beta_1, \ldots, \beta_n\}$ are two integral bases for some number field K then show that $\operatorname{disc}(\alpha_1, \ldots, \alpha_n) = \operatorname{disc}(\beta_1, \ldots, \beta_n)$.

2. (6pts) Find a 6×6 matrix M with coefficients from \mathbf{Z} such that the minimal polynomial of $\alpha = \sqrt[3]{5} + \zeta_3$ over \mathbf{Q} is given by the determinant of xI - M.

- **3.** (14pts) Let $f(x) = x^3 + x 3$.
 - Show that f(x) is irreducible over **Q**.

• Show that f(x) = 0 has a unique real solution $\alpha > 1.2$.

• Let $K = \mathbf{Q}(\alpha)$. Find an integral basis for \mathcal{O}_K and evaluate d_K .

• Show that $\mathcal{O}_K^{\times} = \{ \pm u^k : k \in \mathbf{Z} \}$ for some u > 1.

• Show that $\epsilon = \alpha - 1$ is a unit in \mathcal{O}_K .

• Using the fact $u^3 > |d_K|/4 - 7$, determine u in terms α .

- 4. (14pts) Let $K = \mathbf{Q}(\sqrt{-23})$.
 - Show that $\alpha = (\sqrt{-23} + 1)/2$ is an algebraic integer.
 - Compute disc $(1, \alpha)$ and show that $\{1, \alpha\}$ is an integral basis for \mathcal{O}_K .
 - Show that the Minkowski's constant M_K is less than 5.

• Find the ideal prime decomposition of ideals generated by 2 and 3 in \mathcal{O}_K .

• Find \mathcal{O}_K -ideals \mathfrak{p}_2 and \mathfrak{p}_3 of norms 2 and 3 respectively so that $[\mathfrak{p}_2] = [\mathfrak{p}_3]$ in $\mathrm{Cl}(K)$.

• Show that \mathfrak{p}_2 is not principal whereas \mathfrak{p}_2^3 is principal.

• What is the class number h_K ?

5. (14pts) Let $K = \mathbf{Q}(\sqrt[3]{5}, \zeta_3)$. Recall that K/\mathbf{Q} is normal and $\operatorname{Gal}(K/\mathbf{Q}) \cong S_3$. You can also use the fact that $\mathcal{O}_{\mathbf{Q}(\sqrt[3]{5})} = \mathbf{Z}[\sqrt[3]{5}]$.

• Determine all primes in \mathbf{Z} which ramify in K.

• Let $\mathfrak{P} \subset \mathcal{O}_K$ be a prime ideal lying over 7. Find $N(\mathfrak{P})$.

• Show that $\left(\frac{K/\mathbf{Q}}{\mathfrak{P}}\right)(\zeta_3) = \zeta_3.$

• Evaluate $N_{\mathbf{Q}}^{K}(4-\zeta_{3})$. If $4-\zeta_{3} \in \mathfrak{P}$, then find $(\frac{K/\mathbf{Q}}{\mathfrak{P}})(\sqrt[3]{5})$.

• Let $f(x) = \min(\sqrt[3]{5} + \zeta_3, \mathbf{Q})$, a polynomial of degree six in $\mathbf{Z}[x]$. Does there exist a prime p > 5 such that f(x) is irreducible modulo p.

6. (6pts) Let K be a number field and let $\mathfrak{a} \subset \mathcal{O}_K$ be a nonzero ideal. Prove that $N(\mathfrak{a})$ divides $N_{\mathbf{Q}}^K(\alpha)$ for all $\alpha \in \mathfrak{a}$.

7. (6pts) Let $K = \mathbf{Q}(i)$ and let p be an odd prime. Show that p splits in K if and only if

$$\left(\frac{d_K}{p}\right) = 1.$$

Let $\mathfrak{p} = (\pi)$ be a prime ideal of \mathcal{O}_K lying over p generated by $\pi \in \mathcal{O}_K$. What is $N_{\mathbf{Q}}^K(\pi)$? Prove that an odd prime $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$.

- 8. (14pts) Let $K = \mathbf{Q}(\zeta_p)$ be the *p*-th cyclotomic field for some odd prime *p* and let $K^+ = K \cap \mathbf{R}$ be its maximal real subfield.
 - Give the multiplicative **Z**-module structure of both \mathcal{O}_K^{\times} and $\mathcal{O}_{K^+}^{\times}$ using Dirichlet's unit theorem.

- Let ϵ be a unit in \mathcal{O}_K . Show that each conjugate of $\epsilon/\bar{\epsilon}$ has absolute value 1.
- If all conjugates of an algebraic integer have absolute value 1 then show that it must a be root of unity.

• Prove that $\epsilon/\bar{\epsilon} = \zeta_p^a$ for some integer $a \in \mathbf{Z}$.

• Show that $\epsilon = \zeta_p^b \eta$ for some integer $b \in \mathbb{Z}$ and real unit $\eta \in \mathcal{O}_{K^+}$. Does this contradict Dirichlet's unit theorem?