M E T U Department of Mathematics

Group	Elliptic	List No.	
Code Acad. Year Semester Instructor	: 2013	Name : Last Name : Signature :	
Time	: 19/12/2013 : 10:40 : 110 minutes	6 QUESTIONS ON 6 PAGES 30 TOTAL POINTS	3
1 2	3 4 5 6		

1. (5pts) Consider the elliptic curve $y^2 = x^3 + x + 3$ defined over \mathbb{F}_{101} . This question is an application of the baby step, giant step algorithm. We choose

$$P = (60, 78), \quad Q = (101+1)P = (33, 57), \quad m = 4$$

and obtain the following tables. Explain how we guarentee a match by using m = 4. Find the order of the point P. Using the fact that $x^3 + x + 3$ is irreducible over \mathbb{F}_{101} , find the order of $E(\mathbb{F}_{101})$.

	j 0		1	2	3	3	4		
	jP	∞	(60, 78)	(95, 36)	(4,	77) (7	(1, 101)		
k	-	4	-3	-2		2		3	4
Q + k(2mP)	(97	, 6)	(24, 69)	(60, 23)		(95, 36	5) (47	, 34)	(70, 73)

- **2.** (5pts) Let *E* be an elliptic curve over \mathbb{F}_p and suppose that *E* is supersingular with $a = p + 1 \#E(\mathbb{F}_p) = 0$. Let *N* be a positive integer.
 - Explain how NP can be computed quickly

• If there exists a point in $E(\mathbb{F}_p)$ of order N, then show that $E[n] \subseteq E(\mathbb{F}_{p^2})$.

3. (5pts) Let *E* be the curve given by the Weierstrass equation $y^2 = x^3 + x + 3$ defined over \mathbb{F}_7 . Is *E* an elliptic curve? Find the number of elements in $E(\mathbb{F}_7)$. Let $\phi : (x, y) \mapsto (x^7, y^7)$ be the Frobenius automorphism. Show that $\phi^2 - 2\phi + 7 = 0$. Find the number of elements in $E(\mathbb{F}_{7^2})$ and $E(\mathbb{F}_{7^3})$.

4. (5pts) Let E be the elliptic curve $y^2 = x^3 + x + 6$ defined over \mathbb{F}_{307} . The point P = (2, 4) is of order 331 and therefore generates $E(\mathbb{F}_{307})$. Let Q = (3, 301) which is a point on the elliptic curve. There exists k such that Q = kP. This question illustrates the use of Pollard ρ -method to solve a discrete logarithm problem. We choose

$$M_0 = 2P + 3Q, \quad M_1 = 5P + 7Q, \quad M_2 = 11P + 23Q$$

Let $f: E(\mathbb{F}_{307}) \to E(\mathbb{F}_{307})$ be defined by $f(x, y) = (x, y) + M_i$ if $x \equiv i \pmod{3}$ where x is regarded as an integer $0 \leq x < 307$. Starting with $P_0 = P + 2Q$ we obtain the following points iteratively. More precisely $P_{i+1} = f(P_i)$ for all $i \geq 0$. Determine k modulo 331.

i	0	1	2	3	4	5	6	7	8	9
$x(P_i)$	29	122	129	23	133	218	99	219	127	122
$y(P_i)$	103	104	105	60	34	110	99	39	186	104

5. (5pts) Alice wants to send a message to Bob using ElGamal public key encryption. Bob's public key consists of $E(\mathbb{F}_q), P, B$.

• How can Alice represent her message as a point on $E(\mathbb{F}_q)$?

• Explain how Alice sends a message to Bob using this scheme.

6. (5pts) Let n = 16259. One can easily check that $2^{n-1} \not\equiv 1 \pmod{n}$. Thus n is not a prime. Let E be the curve given by $y^2 = x^3 - 18x + 18$ considered modulo n. Note that P = (1, 1) satisfies this equation. One can find that 2P = (4119, 14625). However 3P cannot be expressed as an affine point.

• Find a factor of n.

• Explain the elliptic curve factorization method briefly and compare it with the p-1 factorization method.