M ETU

Department of Mathematics

1. (5pts) Consider the elliptic curve $y^{2}=x^{3}+x+3$ defined over \mathbb{F}_{101}. This question is an application of the baby step, giant step algorithm. We choose

$$
P=(60,78), \quad Q=(101+1) P=(33,57), \quad m=4
$$

and obtain the following tables. Explain how we guarentee a match by using $m=4$. Find the order of the point P. Using the fact that $x^{3}+x+3$ is irreducible over \mathbb{F}_{101}, find the order of $E\left(\mathbb{F}_{101}\right)$.

j	0	1	2	3	4
$j P$	∞	$(60,78)$	$(95,36)$	$(4,77)$	$(71,101)$

k	-4	-3	-2	\ldots	2	3	4
$Q+k(2 m P)$	$(97,6)$	$(24,69)$	$(60,23)$	\ldots	$(95,36)$	$(47,34)$	$(70,73)$

2. (5pts) Let E be an elliptic curve over \mathbb{F}_{p} and suppose that E is supersingular with $a=p+1-\# E\left(\mathbb{F}_{p}\right)=0$. Let N be a positive integer.

- Explain how $N P$ can be computed quickly
- If there exists a point in $E\left(\mathbb{F}_{p}\right)$ of order N, then show that $E[n] \subseteq E\left(\mathbb{F}_{p^{2}}\right)$.

3. (5pts) Let E be the curve given by the Weierstrass equation $y^{2}=x^{3}+x+3$ defined over \mathbb{F}_{7}. Is E an elliptic curve? Find the number of elements in $E\left(\mathbb{F}_{7}\right)$. Let $\phi:(x, y) \mapsto\left(x^{7}, y^{7}\right)$ be the Frobenius automorphism. Show that $\phi^{2}-2 \phi+7=0$. Find the number of elements in $E\left(\mathbb{F}_{7^{2}}\right)$ and $E\left(\mathbb{F}_{7^{3}}\right)$.
4. $\mathbf{(5 p t s}$) Let E be the elliptic curve $y^{2}=x^{3}+x+6$ defined over \mathbb{F}_{307}. The point $P=(2,4)$ is of order 331 and therefore generates $E\left(\mathbb{F}_{307}\right)$. Let $Q=(3,301)$ which is a point on the elliptic curve. There exists k such that $Q=k P$. This question illustrates the use of Pollard ρ-method to solve a discrete logarithm problem. We choose

$$
M_{0}=2 P+3 Q, \quad M_{1}=5 P+7 Q, \quad M_{2}=11 P+23 Q
$$

Let $f: E\left(\mathbb{F}_{307}\right) \rightarrow E\left(\mathbb{F}_{307}\right)$ be defined by $f(x, y)=(x, y)+M_{i}$ if $x \equiv i \quad(\bmod 3)$ where x is regarded as an integer $0 \leq x<307$. Starting with $P_{0}=P+2 Q$ we obtain the following points iteratively. More precisely $P_{i+1}=f\left(P_{i}\right)$ for all $i \geq 0$. Determine k modulo 331 .

i	0	1	2	3	4	5	6	7	8	9
$x\left(P_{i}\right)$	29	122	129	23	133	218	99	219	127	122
$y\left(P_{i}\right)$	103	104	105	60	34	110	99	39	186	104

5. (5pts) Alice wants to send a message to Bob using ElGamal public key encryption. Bob's public key consists of $E\left(\mathbb{F}_{q}\right), P, B$.

- How can Alice represent her message as a point on $E\left(\mathbb{F}_{q}\right)$?
- Explain how Alice sends a message to Bob using this scheme.

6. (5pts) Let $n=16259$. One can easily check that $2^{n-1} \not \equiv 1(\bmod n)$. Thus n is not a prime. Let E be the curve given by $y^{2}=x^{3}-18 x+18$ considered modulo n. Note that $P=(1,1)$ satisfies this equation. One can find that $2 P=(4119,14625)$. However $3 P$ cannot be expressed as an affine point.

- Find a factor of n.
- Explain the elliptic curve factorization method briefly and compare it with the $p-1$ factorization method.

