M ETU

Department of Mathematics

Group	Elliptic Curves in Cryptography Midterm I			List No.
Code Acad. Year Semester Instructor	$\begin{aligned} & : \text { IAM } 505 \\ & : 2013 \end{aligned}$	Name Last Name	$:$	
	: Fall			
	: Küçüksakallı	Signature	:	
Date	: 07/11/2013			
Time	: 10:40		6 QUESTIONS	
Duration	: 110 minutes		30 TOTAL	
${ }^{1}{ }^{2}$	${ }^{4}$			

1. (6pts) Consider the projective elliptic curve $E: y^{2} z=x^{3}+8 z^{3}$. For each of the following projective lines l_{i}, find the points in the intersection $E \cap l_{i}$ with multiplicities.

- $l_{1}: x-y+2 z=0$.
- $l_{2}: x+2 z=0$
- $l_{3}: y=0$

2. (8pts) Let E be an elliptic curve defined by $y^{2}=x^{3}+A x+B$ defined over a field K of characteristic not equal to 2 or 3 . Let P and Q be points on E different than the point at infinity. Give explicitly the coordinates of $P+Q$ (according to the group law on E) if

- P and Q are different,
- P and Q are the same.

3. (5pts) Let $\left\{T_{1}, T_{2}\right\}$ be a basis of $E[n]$. Show that the Weil pairing $e_{n}\left(T_{1}, T_{2}\right)$ is a primitive n-th root of unity.
4. (3pts) Let E be the elliptic curve $y^{2}=x^{3}-x$ defined over the field \mathbb{F}_{11}. Find a point

$$
P \in E\left(\mathbb{F}_{11}\right) \cap E[3]
$$

different than the point at infinity. (Hint $\psi_{3}=3 x^{4}+6 A x^{2}+12 B x-A^{2}$.)
5. (3pts) You are given that the map $\alpha:(x, y) \mapsto(-x, i y)$ is an endomorphism of

$$
E: y^{2}=x^{3}-x
$$

What is the degree of α ? Is it true that $\alpha=[n]$ for some integer $n \in \mathbb{Z}$.
6. (5pts) Let E be the elliptic curve $y^{2}=x^{3}-x$ defined over \mathbb{F}_{7}. List all elements of $E\left(\mathbb{F}_{7}\right)$ and determine its group structure. Find $E\left(\mathbb{F}_{7}\right) \cap E[p]$ for each prime number p.

