M E T U Department of Mathematics

Group	Elliptic	Curves in Cryptography	List No.
		Midterm I	
Code Acad. Year Semester Instructor	: 2013	Name : Last Name : Signature :	
Time	: 07/11/2013 : 10:40 : 110 minutes	6 QUESTIONS ON 4 PAGES 30 TOTAL POINTS	5
1 2	3 4 5 6		

1. (6pts) Consider the projective elliptic curve $E: y^2 z = x^3 + 8z^3$. For each of the following projective lines l_i , find the points in the intersection $E \cap l_i$ with multiplicities.

• $l_1: x - y + 2z = 0.$

• $l_2: x + 2z = 0$

• $l_3: y = 0$

2. (8pts) Let E be an elliptic curve defined by $y^2 = x^3 + Ax + B$ defined over a field K of characteristic not equal to 2 or 3. Let P and Q be points on E different than the point at infinity. Give explicitly the coordinates of P + Q (according to the group law on E) if

• P and Q are different,

• P and Q are the same.

3. (5pts) Let $\{T_1, T_2\}$ be a basis of E[n]. Show that the Weil pairing $e_n(T_1, T_2)$ is a primitive *n*-th root of unity.

4. (3pts) Let E be the elliptic curve $y^2 = x^3 - x$ defined over the field \mathbb{F}_{11} . Find a point

$$P \in E(\mathbb{F}_{11}) \cap E[3]$$

different than the point at infinity. (Hint $\psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2$.)

5. (3pts) You are given that the map $\alpha : (x, y) \mapsto (-x, iy)$ is an endomorphism of

$$E: y^2 = x^3 - x$$

What is the degree of α ? Is it true that $\alpha = [n]$ for some integer $n \in \mathbb{Z}$.

6. (5pts) Let E be the elliptic curve $y^2 = x^3 - x$ defined over \mathbb{F}_7 . List all elements of $E(\mathbb{F}_7)$ and determine its group structure. Find $E(\mathbb{F}_7) \cap E[p]$ for each prime number p.