M ET U

Department of Mathematics

Group	Elliptic Curves in Cryptography Final Exam			List No.	
Code	: IAM 505 : 2013 : Fall : Küçüksakallı	Name Last Name Signature	:$:$$:$		
Acad. Year					
Semester					
Instructor					
Date	$\begin{aligned} & : 9 / 1 / 2014 \\ & : 10: 40 \\ & : 110 \text { minutes } \\ & \hline \end{aligned}$	7 QUESTIONS ON 4 PAGES 40 TOTAL POINTS			
Time					
Duration					
${ }^{2}$	$3{ }^{3}{ }^{4}$	${ }^{7}$			

1. (10pts) True or False? Justify your answer.

- There exists E / \mathbf{F}_{q} such that $\operatorname{End}(E) \cong \mathbf{Z}$.
- The group $E\left(\mathbf{F}_{q}\right)$ is finite and cyclic.
- If E / \mathbf{C}, then $E[n] \cong \mathbf{Z}_{n} \oplus \mathbf{Z}_{n}$.
- If $E: y^{2}=x^{3}-x$ is defined over \mathbf{F}_{q}, then $\operatorname{End}(E) \cong \mathbf{Z}[i]$.
- MOV attack for supersingular curves is more efficient than the ordinary case.

2. (5pts) Consider the elliptic curve $E: y^{2}=x^{3}+x+6$ defined over \mathbf{F}_{7}. Observe that $P=(1,1), Q=(2,3), R=(3,1)$ are points on E. Show that $P+(Q+R)=(P+Q)+R$ without using the fact that $E\left(\mathbf{F}_{7}\right)$ is a group.
3. (5pts) Let E be the elliptic curve defined by the equation $y^{2}+y=x^{3}+x$ over \mathbf{F}_{2}. Show that $E\left(\mathbf{F}_{16}\right)=E[5]$. (Hint: Show that $\phi_{2}^{4}-1=[-5]$.)
4. (5pts) Let E be the elliptic curve $y^{2}=x^{3}+x+8$ defined over \mathbf{F}_{71}. The point $P=(1,9)$ is of order 79 and therefore generates $E\left(\mathbf{F}_{71}\right)$. Let $Q=(70,19)$, a point on E. Let $f: E\left(\mathbf{F}_{71}\right) \rightarrow E\left(\mathbf{F}_{71}\right)$ be defined by $f(R)=2 R+Q$. Set $P_{0}=P$ and define $P_{i}=f\left(P_{i-1}\right)$ for all $i \geq 1$ recursively. Solve the discrete logarithm problem $Q=k P$ using the following table.

i	0	1	2	3	4	5	6
$x\left(P_{i}\right)$	1	32	26	1	43	60	47
$y\left(P_{i}\right)$	9	19	59	62	31	50	54

5. (5pts) Let \mathbf{F}_{q} be a finite field with $q \equiv 2(\bmod 3)$. If $E: y^{2}=x^{3}+B$ is an elliptic curve defined over \mathbf{F}_{q} then show that E is supersingular.
6. (5pts) Describe Diffie-Hellman key exchange with elliptic curves. Is it possible for the eavesdropper Eve to obtain the key? What is the use of this key for Alice and Bob?
7. (5pts) Let E / \mathbf{C} be an elliptic curve corresponding to the lattice L. Recall that

$$
\operatorname{End}(E) \cong\{\beta \in \mathbf{C}: \beta L \subseteq L\}
$$

If $\operatorname{End}(E)$ is not isomorphic to \mathbf{Z}, then show that it is isomorphic to \mathcal{O}, an order of an imaginary quadratic field K.

