M E T U Department of Mathematics

Group		Algebra I	List No.
		Midterm II	
Acad. Year Semester		Name:Last Name:Signature:	
Date Time Duration	: 17/12/2013 : 13:40 : 110 minutes	7 QUESTIONS ON 4 PAGES 30 TOTAL POINTS	
1 2	3 4 5 6	3 7	

1. (6pts) Let S_n be the symmetric group on $I_n = \{1, 2, ..., n\}$.

• Show that S_n is generated by the n-1 transpositions $(12), (13), \ldots, (1n)$.

• If $\sigma = (i_1 i_2 \dots i_r) \in S_n$ and $\tau \in S_n$, then $\tau \sigma \tau^{-1}$ is the *r*-cycle $(\tau(i_1)\tau(i_2)\dots\tau(i_r))$.

• Show that S_n is generated by (12) and (12...n).

2. (4pts) Let G be an abelian group in which no element (except 0) has finite order. Prove or disprove the following claim: "Then G is a free abelian group."

3. (4pts) If a group G contains an element a having exactly two conjugates, then G has a proper normal subgroup $N \neq \langle e \rangle$.

4. (4pts) Let G be a group order 56. Show that G is solvable.

5. (4pts) Classify all groups of order 8 up to isomorphism.

6. (4pts) Let P be a Sylow p-subgroup of a nilpotent group G. Show that $P \triangleleft G$.

7. (4pts) Let x be a nilpotent element of the commutative ring R. (An element x in R is called nilpotent if $x^m = 0$ for some $m \in \mathbb{Z}^+$.)

• Prove that x is either zero or a zero divisor.

• Prove that $x + 1_R$ is a unit in R.