M E T U

Department of Mathematics

1. (6pts) Let S_{n} be the symmetric group on $I_{n}=\{1,2, \ldots, n\}$.

- Show that S_{n} is generated by the $n-1$ transpositions (12), (13), $\ldots,(1 n)$.
- If $\sigma=\left(i_{1} i_{2} \ldots i_{r}\right) \in S_{n}$ and $\tau \in S_{n}$, then $\tau \sigma \tau^{-1}$ is the r-cycle $\left(\tau\left(i_{1}\right) \tau\left(i_{2}\right) \ldots \tau\left(i_{r}\right)\right)$.
- Show that S_{n} is generated by (12) and $(12 \ldots n)$.

2. (4pts) Let G be an abelian group in which no element (except 0) has finite order. Prove or disprove the following claim: "Then G is a free abelian group."
3. (4pts) If a group G contains an element a having exactly two conjugates, then G has a proper normal subgroup $N \neq\langle e\rangle$.
4. (4pts) Let G be a group order 56. Show that G is solvable.
5. (4pts) Classify all groups of order 8 up to isomorphism.
6. (4pts) Let P be a Sylow p-subgroup of a nilpotent group G. Show that $P \triangleleft G$.
7. (4pts) Let x be a nilpotent element of the commutative ring R. (An element x in R is called nilpotent if $x^{m}=0$ for some $m \in \mathbb{Z}^{+}$.)

- Prove that x is either zero or a zero divisor.
- Prove that $x+1_{R}$ is a unit in R.

