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1. (6pts) Let p be a prime and let G = Zp × Zp2 × Zp3 .

• Determine the number of cyclic subgroups of G of order p3.

• Determine the number of noncyclic subgroups of G of order p4.



2. (6pts) Let G be a finite group and H be a subgroup of G of order n. If H is the only

subgroup of order n in G then show that H is normal in G.

3. (6pts) Let G be a finite group and let H < G be a proper subgroup. Prove there exists

an element of G that is not conjugate to an element of H. (Hint: First prove that there are

at most [G : H] subgroups of G that are conjugate to H.)
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4. (5pts) Consider the ring R = Z[
√
−3]. Find an element α in R which is irreducible but

not prime. Show that R is not a unique factorization domain. (You can use the fact that

N(a+ b
√
−3) = a2 + 3b2 is multiplicative.)

5. (6pts) Let P be a prime ideal of a commutative ring with 1R. Show that the prime

ideals of R/P are in bijective correspondence with the prime ideals of R containing P .
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6. (5pts) Consider the map φ : f(x, y) 7→ f(x, x2) from the polynomial ring C[x, y] to the

polynomial ring C[x]. Show that φ is a homomorphism of rings and determine its kernel.

7. (6pts) Let S be a multiplicative subset of an integral domain R such that 0R 6∈ S. If R

is a principal ideal domain then show that the localization S−1R is a principal ideal domain.
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