M ETU

Department of Mathematics

Group	$\begin{gathered} \text { Algebra I } \\ \text { Final } \end{gathered}$			List No.
Code Acad. Year Semester Instructor	: Math 503 : 2013 : Fall : Küçüksakallı	Name Last Name Signature		
Date Time Duration	$\begin{aligned} & : 20 / 01 / 2014 \\ & : 13: 30 \\ & : 150 \text { minutes } \end{aligned}$	7 QUESTIONS ON 4 PAGES 40 TOTAL POINTS		
	$\begin{array}{\|l\|l\|} \hline 3 & { }^{4} \\ \hline \end{array}$			

1. (6pts) Let p be a prime and let $G=\mathbf{Z}_{p} \times \mathbf{Z}_{p^{2}} \times \mathbf{Z}_{p^{3}}$.

- Determine the number of cyclic subgroups of G of order p^{3}.
- Determine the number of noncyclic subgroups of G of order p^{4}.

2. (6pts) Let G be a finite group and H be a subgroup of G of order n. If H is the only subgroup of order n in G then show that H is normal in G.
3. ($\mathbf{6 p t s}$) Let G be a finite group and let $H<G$ be a proper subgroup. Prove there exists an element of G that is not conjugate to an element of H. (Hint: First prove that there are at most $[G: H]$ subgroups of G that are conjugate to H.)
4. (5pts) Consider the ring $R=\mathbf{Z}[\sqrt{-3}]$. Find an element α in R which is irreducible but not prime. Show that R is not a unique factorization domain. (You can use the fact that $N(a+b \sqrt{-3})=a^{2}+3 b^{2}$ is multiplicative.)
5. (6pts) Let P be a prime ideal of a commutative ring with 1_{R}. Show that the prime ideals of R / P are in bijective correspondence with the prime ideals of R containing P.
6. (5pts) Consider the map $\phi: f(x, y) \mapsto f\left(x, x^{2}\right)$ from the polynomial ring $\mathbf{C}[x, y]$ to the polynomial ring $\mathbf{C}[x]$. Show that ϕ is a homomorphism of rings and determine its kernel.
7. (6pts) Let S be a multiplicative subset of an integral domain R such that $0_{R} \notin S$. If R is a principal ideal domain then show that the localization $S^{-1} R$ is a principal ideal domain.
