\left.| M ETM - Department of Mathematics | | | | |
| :--- | :--- | :--- | :---: | :---: |
| Math 473 - Ideals, Varieties and Algorithms | | | | |$\right]$

Question 1. (25 points) State the Dickson's Lemma.

Prove that Dickson's Lemma is equivalent to the following statement: given a nonempty subset $A \subseteq \mathbb{Z}_{\geqslant 0}^{n}$, there are finitely many elements $\alpha(1), \ldots, \alpha(s) \in A$ such that for every $\alpha \in A$, there exists some $i \in\{1, \ldots, s\}$ and some $\gamma \in \mathbb{Z}_{\geqslant 0}^{n}$ such that $\alpha=\alpha(i)+\gamma$.

Question 2 (25 points) State the definition of Gröbner basis. Explain briefly why a Gröbner basis always exists.

Let G and H be Gröbner bases for the same ideal $I \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for a fixed monomial ordering. Show that $\bar{f}^{G}=\bar{f}^{H}$ for all $f \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Question 3 (25 points) Consider the following algorithm which looks like the Buchberger's algorithm. Note that there is a "minor" change.
$G=F$
REPEAT
$G^{\prime}=G$
FOR each pair $\{p, q\}, p \neq q$ in $G^{\prime} \mathrm{DO}$
$r=S(p, q)$
IF $r \neq 0$ THEN $G=G \cup\{r\}$
UNTIL $G=G^{\prime}$
RETURN G

Fix the monomial order to be the lexicographic order with $x>y$. If the input is $F=$ $\{x y, x+y\}$, then show that this algorithm never terminates.

Question 4 (25 points) Consider the polynomial ring $\mathbb{Q}[x, y, z]$. Fix the monomial order to be the lexicographic order with $x>y>z$. Let $F=\left(x y+z, x+y z, y+z^{2}\right)$ and $I=\langle F\rangle$, the ideal generated by F.
(a) Show that the Buchberger's algorithm gives the output $G=F \cup\left\{-z^{5}+z\right\}$ for the input F. (Omit the details if the division algorithm gives zero remainder.)
(b) Is F a Gröbner basis of I ?
(c) What is the reduced Gröbner basis of I ?

