METU - Department of Mathematics Math 473 - Ideals, Varieties and Algorithms							
Fall 2018 Ö. Küçüksakallı					Midterm 2 December 13, 17:40 100 minutes 4 questions on 4 pages.		Surname: Name: Student No: Signature:
1	2	3	4			Total	

Question 1. (25 points) State the Dickson's Lemma.

Prove that Dickson's Lemma is equivalent to the following statement: given a nonempty subset $A \subseteq \mathbb{Z}_{\geq 0}^n$, there are finitely many elements $\alpha(1), \ldots, \alpha(s) \in A$ such that for every $\alpha \in A$, there exists some $i \in \{1, \ldots, s\}$ and some $\gamma \in \mathbb{Z}_{\geq 0}^n$ such that $\alpha = \alpha(i) + \gamma$.

Question 2 (25 points) State the definition of Gröbner basis. Explain briefly why a Gröbner basis always exists.

Let G and H be Gröbner bases for the same ideal $I \subseteq k[x_1, x_2, \ldots, x_n]$ for a fixed monomial ordering. Show that $\overline{f}^G = \overline{f}^H$ for all $f \in k[x_1, x_2, \ldots, x_n]$. Question 3 (25 points) Consider the following algorithm which looks like the Buchberger's algorithm. Note that there is a "minor" change.

 $\begin{array}{l} G=F\\ \text{REPEAT}\\ G'=G\\ \text{FOR each pair }\{p,q\},\,p\neq q \text{ in }G' \text{ DO}\\ r=S(p,q)\\ \text{IF }r\neq 0 \text{ THEN }G=G\cup\{r\}\\ \text{UNTIL }G=G'\\ \text{RETURN }G\end{array}$

Fix the monomial order to be the lexicographic order with x > y. If the input is $F = \{xy, x + y\}$, then show that this algorithm never terminates.

Question 4 (25 points) Consider the polynomial ring $\mathbb{Q}[x, y, z]$. Fix the monomial order to be the lexicographic order with x > y > z. Let $F = (xy + z, x + yz, y + z^2)$ and $I = \langle F \rangle$, the ideal generated by F.

(a) Show that the Buchberger's algorithm gives the output $G = F \cup \{-z^5 + z\}$ for the input F. (Omit the details if the division algorithm gives zero remainder.)

(b) Is F a Gröbner basis of I?

(c) What is the reduced Gröbner basis of *I*?