(1) M E T U - Department of Mathematics

Math 473 - Ideals, Varieties and Algorithms

Question 1. (25 points) Consider the following algorithm which is similar to the division algorithm in $k[x]$. Note that there is a "minor" change.

Input: $f, g \in k[x] \quad \& \quad$ Output: $q, r \in k[x]$
$q:=0 ; r:=f ;$
WHILE $r \neq 0$ AND $\operatorname{LT}(g)$ divides $\operatorname{LT}(r)$ DO

$$
\begin{aligned}
q & :=q+(\operatorname{LT}(r) / \operatorname{LT}(g)) g \\
r & :=r-(\operatorname{LT}(r) / \operatorname{LT}(g)) g
\end{aligned}
$$

RETURN q, r
(a) Find the output for $f=x^{3}+x+1$ and $g=x^{2}-x$ in $\mathbf{Q}[x]$.
(b) Show that this algorithm terminates for each input.

Question 2 (25 points) Using the lexicographic order in $\mathbf{Q}[x, y, z]$ (with $x>_{\operatorname{lex}} y>_{\operatorname{lex}} z$), perform the multivariate division algorithm to divide $f=x z+x^{2} y^{2}$ by the indicated pair where $f_{1}=x-y^{2}$ and $f_{2}=x y-1$.
(a) with $F=\left(f_{1}, f_{2}\right)$
(b) with $F=\left(f_{2}, f_{1}\right)$
(c) Is f an element of the ideal $I=\left\langle f_{1}, f_{2}\right\rangle$? (Hint: Plug in $x=y=z=1$.)

Question 3 (25 points) Let $V \subseteq \mathbb{R}^{3}$ be the curve parametrized by $\left(t, t^{3}, t^{4}\right)$.
(a) Prove that V is an affine variety.
(b) Determine $\mathbf{I}(V)$, the ideal of V. (Hint: Express each element $f \in \mathbf{R}[x, y, z]$ in the form $f=\left(y-x^{3}\right) h_{1}+\left(z-x^{4}\right) h_{2}+r$.

Question 4 (25 points) Derive a parametrization of the hyperbola $x^{2}-2 y^{2}=1$, i.e. find $f(t), g(t) \in \mathbf{R}[t]$ such that $(f(t), g(t))$ gives all points on the hyperbola except possibly a point. (Hint: Consider the nonvertical lines through the point $P(-1,0)$ on the hyperbola.)

