METU - Department of Mathematics Math 473 - Ideals, Varieties and Algorithms		
Fall 2018 Ö. Küçüksakallı	Midterm 1 November 7, 17:40 100 minutes 4 questions on 4 pages.	Surname: Name: Student No: Signature:
	Total	

Question 1. (25 points) Consider the following algorithm which is similar to the division algorithm in k[x]. Note that there is a "minor" change.

 $\text{Input: } f,g \in k[x] \quad \ \& \quad \ \text{Output: } q,r \in k[x]$

 $\begin{array}{l} q:=0;r:=f;\\ \text{WHILE} \ r\neq 0 \ \text{AND} \ \text{LT}(g) \ \text{divides} \ \text{LT}(r) \ \text{DO} \\ q:=q+(\text{LT}(r)/\text{LT}(g))g \\ r:=r-(\text{LT}(r)/\text{LT}(g))g \\ \text{RETURN} \ q,r \end{array}$

(a) Find the output for $f = x^3 + x + 1$ and $g = x^2 - x$ in $\mathbf{Q}[x]$.

(b) Show that this algorithm terminates for each input.

Question 2 (25 points) Using the lexicographic order in $\mathbf{Q}[x, y, z]$ (with $x >_{\text{lex}} y >_{\text{lex}} z$), perform the multivariate division algorithm to divide $f = xz + x^2y^2$ by the indicated pair where $f_1 = x - y^2$ and $f_2 = xy - 1$.

(a) with $F = (f_1, f_2)$

(b) with $F = (f_2, f_1)$

(c) Is f an element of the ideal $I = \langle f_1, f_2 \rangle$? (Hint: Plug in x = y = z = 1.)

Question 3 (25 points) Let $V \subseteq \mathbb{R}^3$ be the curve parametrized by (t, t^3, t^4) .

(a) Prove that V is an affine variety.

(b) Determine $\mathbf{I}(V)$, the ideal of V. (Hint: Express each element $f \in \mathbf{R}[x, y, z]$ in the form $f = (y - x^3)h_1 + (z - x^4)h_2 + r$.)

Question 4 (25 points) Derive a parametrization of the hyperbola $x^2 - 2y^2 = 1$, i.e. find $f(t), g(t) \in \mathbf{R}[t]$ such that (f(t), g(t)) gives all points on the hyperbola except possibly a point. (Hint: Consider the nonvertical lines through the point P(-1, 0) on the hyperbola.)