(1) M E T U - Department of Mathematics

Math 473 - Ideals, Varieties and Algorithms

Question 1. (25 points) Consider the polynomial ring $\mathbb{R}[x, y]$ under the lexicographic order with $x>y$. Set $f=x^{4}-2 x^{2}-y^{4}+2 y^{2} \in \mathbb{R}[x, y]$.
(a) Show that $G=\left\{x^{2}-y^{2}, x y^{2}-x, y^{3}-y\right\}$ is a Gröbner basis for $I=\left\langle f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle$.
(b) Find all singular points of the curve $f(x, y)=0$.

Question 2 (25 points) (a) State the Extension Theorem for $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(b) Let f be a non-constant polynomial in $\mathbb{C}[x, y]$. Show that $\mathbf{V}(f)$ is infinite by using the Extension Theorem.
(c) Let f and g be non-constant polynomials in $\mathbb{C}[x, y]$. Show that $\mathbf{V}(f, g)$ is infinite if and only if f and g have a common irreducible factor in $\mathbb{C}[x, y]$.

Question 3 (25 points) (a) Write a pseudocode for the Buchberger's Algorithm.
(b) Explain briefly why this algorithm terminates.
(c) Explain the connection between the Buchberger's Algorithm and the Euclidean Algorithm for polynomials with one variable.

Question 4 (25 points) Consider the surface S parametrized by

$$
\begin{aligned}
& x=u v, \\
& y=u^{2}-u v, \\
& z=v^{2},
\end{aligned}
$$

with $u, v \in k$ where char $(k)=0$. Consider the ideal $I=\left\langle x-u v, y-u^{2}+u v, z-v^{2}\right\rangle$ of $k[u, v, x, y, z]$. You are given that the reduced Gröbner basis for I, under the lex order with $u>v>x>y>z$, is $G=\left\{g_{1}, \ldots, g_{6}\right\}$ where

$$
\begin{array}{ll}
g_{1}=u^{2}-x-y, & g_{4}=u z-v x, \\
g_{2}=u v-x, & g_{5}=v^{2}-z, \\
g_{3}=u x-v x-v y, & g_{6}=x^{2}-x z-y z .
\end{array}
$$

(a) Is $\mathbf{V}\left(g_{6}\right)$ the smallest variety over $k=\mathbb{C}$ containing S ?
(b) Show that the parametrization does not fill up the variety $\mathbf{V}\left(g_{6}\right)$ over $k=\mathbb{R}$.
(c) The pairs $(u, v)=(1,1)$ and $(u, v)=(-1,-1)$ parametrize the same point $(1,0,1)$. Find all points $(x, y, z) \in S \cap \mathbb{C}^{3}$ parametrized by distinct pairs $(u, v) \in \mathbb{C}^{2}$.

