Name and Surname: Student Number: Math 466 - Fall 2019 - METU ## Quiz 10 Consider the finite reflection group $W = \langle s_{\alpha}, s_{\beta}, s_{\gamma} \rangle$ where $\alpha = e_1 - e_2$, $\beta = e_2 - e_3$, and $\gamma = e_3 - e_4$. Set $\mathcal{B} = \{\alpha, \beta, \gamma\}$ and $V = \operatorname{span}(\mathcal{B}) \subseteq \mathbb{R}^4$. Regard \mathcal{B} as an ordered basis for V. This construction is referred as A_3 . 1. Find the angels in between each pair of vectors from the basis \mathcal{B} . $$\alpha \leftarrow \frac{18}{120^{\circ}}$$ $$100 \times 120^{\circ}$$ 2. Determine the matrix representations $[s_{\alpha}]_{\mathcal{B}}$, and $[s_{\gamma}]_{\mathcal{B}}$. (You may use the formula $s_{\alpha}(\lambda) = \lambda - \frac{2\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha$.) $$\begin{aligned} S_{\alpha} \\ S_{\alpha} \\ S_{\beta} \\ S_{\alpha}(\alpha) = -\alpha \end{aligned}$$ $$\begin{aligned} S_{\alpha}(\beta) = \alpha + \beta \\ S_{\alpha}(\beta) = \alpha + \beta \end{aligned}$$ Use the formula 3. Compute $[s_{\alpha}s_{\gamma}]_{\mathcal{B}} = [s_{\alpha}]_{\mathcal{B}}[s_{\gamma}]_{\mathcal{B}}$ and determine its order. $$[S_{\chi}S_{\eta}]_{\mathfrak{B}} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \quad \text{has order } 2.$$