Midterm 2-November 20-17:40-120 minutes

1. Consider $P=(1,1,1), Q=(-1,-1,1), R=(1,-1,-1)$ and $S=(-1,1,-1)$ and

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

- Show that the points P, Q, R, S form a tetrahedron in \mathbb{R}^{3}.

The distance between each pair of points P, Q, R, S is $2 \sqrt{2}$. Any three points out of these four points form an equilateral triangle. There are four such equilateral triangles and they form a tetrahedron.

- Show that the group $G=\langle A, B\rangle$ acts on the set $X=\{P, Q, R, S\}$ by left multiplication. (Regard P, Q, R and S as column vectors.)

We first verify that $A P=Q, A Q=P, A R=S, A S=R$ and $B P=P, B Q=$ $R, B R=S, B S=Q$. For each $g \in G$ we have $g X=X$ because $A X=X$ and $B X=X$. We have $I x=x$ for each point $x \in X$. Let g_{1}, g_{2} be elements of G which are matrices. We have $g_{1}\left(g_{2} x\right)=\left(g_{1} g_{2}\right) x$ for each $x \in X$ by the associative property of the matrix multiplication. Thus G acts on X. As a result, there exists a homomorphism $\psi: G \rightarrow S_{X}=S_{4}$. In particular, $\psi(A)=(P Q)(R S)$ and $\psi(B)=(Q R S)$.

- Write a group isomorphism between G and A_{4}.

The points P, Q, R and S are not collinear, i.e. they do not lie on a single line. It follows that there is no nontrivial element of SO_{3} that fix all the points in X. Thus the homomorphism ψ is injective. The image of ψ contains the even permutations $\psi(A)=(P Q)(R S)$ and $\psi(B)=(Q R S)$ which are of order 2 and 3 , respectively. The alternating group A_{4} has no subgroup of order 6 . We must have $\operatorname{Im}(\psi)=\langle\psi(A), \psi(B)\rangle=A_{4}$. Therefore, the map $\psi: G \rightarrow A_{4}$ is a group isomorphism.
2. Consider the cube with vertices $(\pm 1, \pm 1, \pm 1)$ in \mathbb{R}^{3} with rotational symmetry group G. Regard G as a subgroup of $S O_{3}$. Let S be the sphere centered at the origin with radius $\sqrt{3}$. Let X be the set of poles over S of nontrivial elements g in G.

- Show that $P=(\sqrt{3}, 0,0) \in X$.

The cube has a rotational symmetry around the x-axis through $\pi / 2$ which induces the permutation $\left(A C^{\prime} B^{\prime} D\right)\left(B D^{\prime} A^{\prime} C\right)$. We regard this rotation as a matrix $R \in S_{3}$. The axis of R intersects the sphere S at $(\pm \sqrt{3}, 0,0)$ which are poles of G.

- The group G acts on X. Find the orbit $G(P)$.

The faces of the cube are permuted by the rotational symmetries of the cube. As a result, the poles that lie over the y-axis and z-axis are in the same orbit as P. More precisely, we have

$$
G(P)=\{(\pm \sqrt{3}, 0,0),(0, \pm \sqrt{3}, 0),(0,0, \pm \sqrt{3})\}
$$

- Find the stabilizer group G_{P}.

We have $G_{P}=\left\{R, R^{2}, R^{3}, I\right\}$ where R is the matrix from the first part.

- Verify the orbit-stabilizer formula $|G|=|G(x)| \cdot\left|G_{x}\right|$ with $x=P$.

We verify that $|G|=24=6 \cdot 4=|G(P)| \cdot\left|G_{P}\right|$.
3. Consider the group $G=H \times{ }_{\varphi} J$. What is the binary operation of this group? What is the identity element? What is the inverse of (h, j) ?

- The binary operation is defined to be $\left(h_{1}, j_{1}\right)\left(h_{2}, j_{2}\right)=\left(h_{1} \varphi\left(j_{1}\right)\left(h_{2}\right), j_{1} j_{2}\right)$.
- The identity element is $\left(e_{H}, e_{J}\right)$ where e_{H} and e_{J} are the identity elements of H and J, respectively.
- The inverse of (h, j) is $(h, j)^{-1}=\left(\varphi(j)^{-1}\left(h^{-1}\right), j^{-1}\right)$

As an example, consider $H=S O_{2}$ and $J=\mathbb{Z}_{2}$. Consider the group homomorphism $\varphi: J \rightarrow \operatorname{Aut}(H)$ where $\varphi(0)$ is the identity map $A \mapsto A$ and $\varphi(1)$ is the map $A \mapsto A^{-1}$ on H. Show that $H \times \varphi J$ is isomorphic to the orthogonal group O_{2}.

Set $a=(A, 0)$ and $b=(I, 1)$. We have $b^{-1}=b$ and

$$
\begin{aligned}
b a b^{-1} & =(I, 1)(A, 0)(I, 1) \\
& =(I \varphi(1)(A), 0+1)(I, 1) \\
& =\left(A^{-1}, 1\right)(I, 1) \\
& =\left(A^{-1}, 0\right) \\
& =a^{-1} .
\end{aligned}
$$

Fix $B \in O_{2} \backslash S O_{2}$, an arbitrary reflection. For each rotation $A \in S O_{2}$, we have $B A B^{-1}=A^{-1}$. An arbitrary orthogonal matrix can be written uniquely in the form $A B^{\varepsilon}$ for some $\varepsilon \in\{0,1\}$. Similarly, an arbitrary element of $H \times_{\varphi} J$ can be written uniquely in the form $(a, \varepsilon)=a b^{\varepsilon}$ for some $\varepsilon \in\{0,1\}$. We define $\psi: H \times{ }_{\varphi} J \rightarrow O_{2}$ by the formula

$$
\psi\left(a b^{\varepsilon}\right)=A B^{\varepsilon} .
$$

This map is clearly bijective. We need to verify that it is a group homomorphism. The most important case that has to be verified is the following:

$$
\psi(b a)=\psi(b a b b)=\psi\left(a^{-1} b\right)=A^{-1} B=B A B B=B A=\psi(b) \psi(a) .
$$

The other cases can be verified easily.

Hint: Set $a=(A, 0)$ and $b=(I, 1)$ and compute $b a b^{-1}$. Construct $\psi: H \times{ }_{\varphi} J \rightarrow O_{2}$ which satisfies $\psi(a)=A$ and $\psi(b)=B$ for some suitable $B \in O_{2} \backslash \mathrm{SO}_{2}$.
4. For each of the following isometries, determine the type of the isometry; is it a translation, a rotation, a reflection or a glide reflection? If it is a rotation, then find its center and angle. If it is a reflection or a glide reflection, then find its mirror.

- $f=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$ or $f(x, y)=(y+1, x+1)$.

The isometry f is a glide reflection. Its mirror is the line $y=x$. The reflection is followed by the translation $(x, y) \mapsto(x+1, y+1)$.

- $g=\left(\left[\begin{array}{c}0 \\ -1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\right)$ or $g(x, y)=(-y, x-1)$.

The isometry g preserves the orientation and it is not a translation. It must be a rotation. Indeed, it is the rotation around the point $(1 / 2,-1 / 2)$ through the angle $\pi / 2$.

- fg.

We first compute that $f g=\left(\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\right)$ or $f g(x, y)=(x, 1-y)$. The isometry $f g$ is a reflection. Its mirror is the line $y=1 / 2$.

- f^{2}.

The isometry f^{2} is a translation since $f^{2}=\left(\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)$ or $f^{2}(x, y)=$ $(x+2, y+2)$.
5. For each of the following, let G be the group of isometries fixing the given pattern. Find generators for the translation subgroup H of G. Determine the lattice L and its type. Determine the structure of the point group $J=\pi(G)$.

The translation subgroup H is generated by

- $\tau_{1}(x, y)=(x+1, y)$ and
- $\tau_{2}(x, y)=(x, y+1)$.

The lattice L is given by

$$
L=\{(m, n): m, n \in \mathbb{Z}\}
$$

which is a square lattice.

The wallpaper pattern is preserved if we rotate around the origin through the angle $\pi / 2$. There is no reflection. Thus we have

$$
J=\left\langle\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right\rangle \cong \mathbb{Z}_{4}
$$

In this case, the translation subgroup H is generated by

- $\tau_{1}(x, y)=(x+1, y)$ and
- $\tau_{2}(x, y)=(x, y+2)$.

The lattice L is given by

$$
L=\{(m, 2 n): m, n \in \mathbb{Z}\}
$$

which is a rectangular lattice.

The wallpaper pattern is preserved if we reflect about the x-axis. There is also a glide reflection preserving the pattern. Observe that the reflection about the vertical line $x=1 / 2$ followed by the translation $(x, y) \mapsto(x, y+1)$ preserves the pattern. Thus we have

$$
J=\left\langle\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} .
$$

