(1) METU-Department of Mathematics Math 464 - Introduction to Representation Theory

Question 1. (25 point) For each of the following statements, determine whether it is true or false. Justify your answer briefly.
(a) Suppose that χ is a non-zero, non-trivial character of G. If $\chi(g)$ is a non-negative real number for all $g \in G$ then χ is reducible.
(b) Let $\chi_{\text {reg }}$ be the character of the regular $\mathbb{C} G$-module. If χ is a character of G, then $\left\langle\chi_{\mathrm{reg}}, \chi\right\rangle=\chi(1)$
(c) Let $V=\mathbb{C}[G]$. Consider the map $\vartheta: V \rightarrow V$ given by $\vartheta: v \mapsto z v$ for some fixed $z \in V$. If ϑ is a $\mathbb{C} G$-module homomorphism then z is in the center of $\mathbb{C}[G]$.

Question 2. (25 point) Schur's Lemma and an application.
(a) State Schur's Lemma. Give an outline for its proof.
(b) Let G be group and let ρ be a representation of G over \mathbb{C}. Show that $\rho(g)$ is diagonalizable for each $g \in G$.

Question 3. (25 point) Let $G=D_{8}=\langle a, b| a^{4}=1=b^{2}, b^{-1} a b=a^{-1}$). Consider the following character χ of G :

g	1	a^{2}	a, a^{3}	$b, a^{2} b$	$a b, a^{3} b$
$\chi(g)$	2	2	0	-2	0

(a) Compute $\langle\chi, \chi\rangle$. Is χ irreducible?
(b) Show that $\chi \neq 2 \psi$ for any character ψ of G.
(c) Find a representation ρ of G such that the associated $\mathbb{C} G$-module has character χ.

Question 4. (25 point) Let $G=S_{3}$. Recall that there are precisely three nonisomorphic $\mathbb{C} G$-modules V_{1}, V_{2} and V_{3} with characters, χ_{1}, χ_{2} and χ_{3}, respectively:

	(1)	(12)	(123)
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

(a) Let $\mathbb{C}[G]=W_{1} \oplus W_{2} \oplus W_{3}$ where W_{i} is the sum of those $\mathbb{C} G$-modules which have character χ_{i}. Determine $e_{i} \in W_{i}$ such that $1=e_{1}+e_{2}+e_{3}$.
(b) Let V be the permutation module with the natural basis $\mathcal{B}=\left\{v_{1}, v_{2}, v_{3}\right\}$. Compute $e_{i} V$ for each $i \in\{1,2,3\}$.
(c) Decompose V as a direct sum of $\mathbb{C} G$-modules using part (b).

