Name and Surname:
Student Number:
Math 366 - Spring 2017 - METU

Quiz 7

Question: Consider the ring $I_{-6}=\mathbb{Z}[\sqrt{-6}]$

- Is $\sqrt{-6}$ a prime element of I_{-6} ?

Solution: The element $\sqrt{-6}$ divides the product $2 \cdot 3=6$ in the ring I_{-6}. However it does not divide 2 or 3 . We conclude that $\sqrt{-6}$ is not a prime element.

- Is $\sqrt{-6}$ an irreducible element of I_{-6} ?

Solution: Suppose that $\sqrt{-6}=\alpha \beta$. Then $6=N(\alpha) N(\beta)$. An arbitrary element $x+y \sqrt{-6}$ of the ring I_{-6} has norm $N(x+y \sqrt{-6})=x^{2}+6 y^{2}$. This quantity is always an integer and never equals ± 2 or ± 3. As a result, either $N(\alpha)= \pm 1$ or $N(\beta)= \pm 1$. It follows that either α is a unit or β is a unit. Thus $\sqrt{-6}$ is an irreducible element.

- Does $\operatorname{gcd}(4+2 \sqrt{-6}, 10)$ exist in I_{-6} ?

Solution: The set of common divisors of $4+2 \sqrt{-6}$ and 10 is a nonempty partially ordered set under the divisibility relation. We note that $\alpha=2$ and $\beta=2+\sqrt{-6}$ are maximal elements of this poset. However this set has no maximum element since neither $\alpha \mid \beta$ holds, nor $\beta \mid \alpha$ holds. We conclude that $\operatorname{gcd}(4+2 \sqrt{-6}, 10)$ does not exist.

- Is I_{-6} a UFD?

Solution: In a unique factorization domain, the notions irreducible and prime are equivalent. We have seen that $\sqrt{-6} \in I_{-6}$ is an irreducible element which is not prime. Thus I_{-6} is not a UFD.

