Name and Surname:
Student Number:
Math 366 - Spring 2017 - METU

Quiz 6

Question: This question is related with the quadratic number field $\mathbb{Q}(\sqrt{-3})$.

- Write the norm and the trace map for $\mathbb{Q}(\sqrt{-3})$.

Solution: If $\alpha=s+t \sqrt{-3}$ for some $s, t \in \mathbb{Q}$, then $\bar{\alpha}=s-t \sqrt{-3}$. We have

$$
\begin{aligned}
\operatorname{Tr}(\alpha) & =\alpha+\bar{\alpha}=2 s, \\
N(\alpha) & =\alpha \cdot \bar{\alpha}=s^{2}+3 t^{2} .
\end{aligned}
$$

- What is I_{-3} ? Describe its elements explicitly.

Solution: We use the notation I_{-3} to indicate the set of (algebraic) integers of the field $\mathbb{Q}(\sqrt{-3})$. Since $-3 \equiv 1(\bmod 4)$, we have $w_{-3}=(\sqrt{-3}+1) / 2$. Thus

$$
\begin{aligned}
I_{-3} & =\left\{x+y \cdot w_{-3}: x, y \in \mathbb{Z}\right\} \\
& =\left\{\left(x+\frac{y}{2}\right)+\left(\frac{y}{2}\right) \sqrt{-3}: x, y \in \mathbb{Z}\right\} .
\end{aligned}
$$

- Compute $N(\alpha)$ for an arbitrary element $\alpha \in I_{-3}$.

Solution: Combining the previous parts, for any $\alpha \in I_{-3}$ we obtain

$$
N\left(x+y \cdot w_{-3}\right)=\left(x+\frac{y}{2}\right)^{2}+3\left(\frac{y}{2}\right)^{2}=x^{2}+x y+y^{2} .
$$

- Is it possible to have $N(\alpha)=5$ for some $\alpha \in I_{-3}$?

Solution: The equation $x^{2}+x y+y^{2}=5$ forms an ellipse in the $x y$-plane. Thus it is enough to check finitely many cases. Note that

$$
\left(x+\frac{y}{2}\right)^{2}+3\left(\frac{y}{2}\right)^{2}=5 .
$$

Thus $|y|$ is at most 2 . Now, it is easy to verify that the equation $x^{2}+x y+y^{2}=5$ has no integer solution with $-2 \leq y \leq 2$, and therefore no solution with $y \in \mathbb{Z}$.

