Name and Surname:
Student Number:
Math 366 - Spring 2017 - METU

Quiz 5

Question: Fill in the blanks.

The division algorithm is an essential part of the Euclidean algorithm for \mathbb{Z}. Given two integers, this algorithm computes their $\mathbf{q u o t i e n t ~ a n d ~} \mathbf{r}$ emainder. More precisely, given two integers \qquad a and $b \neq 0$ \qquad there exist \qquad integers q and r \qquad such that \qquad $a=b q+r$ and $|r|<|b|$ \qquad

Recall that $N(\alpha)=\alpha \bar{\alpha}=x^{2}+y^{2}$ is called the norm of a Gaussian integer $\alpha=x+y i$. We proved in class that the division algorithm works in $\mathbb{Z}[i]$, too. More precisely, given two Gaussian integers \qquad α and $\beta \neq 0$ \qquad there exist \qquad Gaussian integers γ and δ \qquad such that \qquad $\alpha=\beta \gamma+\delta$ and $N(\delta)<N(\beta)$ \qquad

Question: Let $R=\mathbb{Z}[\sqrt{-5}]$. We define the norm similarly, i.e. $N(x+y \sqrt{-5})=x^{2}+5 y^{2}$. Given $\alpha=1+\sqrt{-5} \in R$ and $\beta=2 \in R$, show that there exists no $\gamma \in R$ (and $\delta \in R$) such that $\alpha=\gamma \beta+\delta$ and $0 \leq N(\delta)<N(\beta)$.

Solution: Assume that such an element $\gamma \in R$ (and $\delta \in R$) exists. Then the element δ must have norm less than $N(\beta)=4$. The possibilities $N(\delta)=2$ and $N(\delta)=3$ are easily eliminated. If $N(\delta)=1$, then $\delta= \pm 1$. If $N(\delta)=0$, then $\delta=0$. There are three cases to be considered, namely $\delta=-1,0$ or 1 .

- If $\delta=-1$, then we have $2 \gamma=2+\sqrt{-5}$ since $\alpha=\gamma \beta+\delta$. Taking the norms of both sides, we obtain that $4 N(\gamma)=9$. This is a contradiction to the fact that $N(\gamma) \in \mathbb{Z}$.
- If $\delta=0$, then we have $2 \gamma=1+\sqrt{-5}$. Taking the norms of both sides, we obtain that $4 N(\gamma)=6$, another contradiction.
- If $\delta=1$, then we have $2 \gamma=\sqrt{-5}$. Taking the norms of both sides, we obtain that $4 N(\gamma)=5$, another contradiction.

We conclude that such an element $\gamma \in R$ (and $\delta \in R$) cannot exist.

