Name and Surname: Student Number:

Math 366 - Spring 2017 - METU

Quiz 3

Question: Let (a, b, c) be a Pythagorean triple such that 0 < a < b < c. Show that there are infinitely such triples with c - b = 1. What can you say about such triples with b - a = 1?

Solution: The condition c - b = 1 implies that gcd(b, c) = 1. Thus the Pythagorean triple (a, b, c) is primitive. Since 0 < a < b < c, the Pythagorean triple (a, b, c) must be of the form either $(x^2 - y^2, 2xy, x^2 + y^2)$ or $(2xy, x^2 - y^2, x^2 + y^2)$ for some integers x > y > 0. In the latter case, both b and c are even. Thus we are left with the case $b - c = x^2 + y^2 - 2xy = 1$. This is possible only if |x - y| = 1 and as a result the choice x = n + 1 and y = n for some positive integer n gives each such Pythagorean triple. More precisely $(a, b, c) = (2n + 1, 2n^2 + 2n, 2n^2 + 2n + 1)$ with $n = 1, 2, 3, \ldots$ is an infinite family of Pythagorean triples such that 0 < a < b < c and c - b = 1.

Now, we consider the Pythagorean triples (a, b, c) with 0 < a < b < c and b - a = 1. Similar to the first case, the condition b - a = 1 implies that gcd(a, b) = 1. Thus the Pythagorean triple (a, b, c) is primitive. Let us consider the case with a = 2xy and $b = x^2 - y^2$. Then $b - a = x^2 - y^2 - 2xy = (x - y)^2 - 2y^2$. Putting u = x - y and v = y, we obtain $u^2 - dv^2 = 1$ which is a Pell's equation with infinitely many solutions. For each solution (u, v), we consider x = u + v and y = v. As a result, for each solution (u, v) of $u^2 - 2v^2 = 1$, the triple

$$(a, b, c) = (2(u+v)v, (u+v)^2 - v^2, (u+v)^2 + v^2)$$

is a Pythagorean triple with b - a = 1. For example,

u	v	a	b	c
3	2	20	21	29
17	12	696	697	985

One can show that infinitely solutions can be obtained in this fashion. There is a similar family b - a = 1 where a is odd. Try to construct it yourself. As a hint you may use solutions of $u^2 - 2v^2 = 1$ which are not positive. For example,

u	v	a	b	c
3	-2	-4	-3	5
17	-12	-120	-119	169