Name and Surname:
Student Number:

Math 366 - Spring 2017 - METU

Quiz 2

Question: Determine the group structure of $\operatorname{Tor}(E(\mathbb{Q}))$ where $E: y^{2}=x^{3}-2 x$.

Solution: A torsion point $P(x, y)$ has a y-coordinate that equals zero or an integer dividing $D=-4(-2)^{3}-27 \cdot 0^{2}=32$ by the theorem of Nagell-Lutz. Positive values which are suitable for the y-coordinate are $0,1,2,4,8,16$ and 32 . A quick search gives the following five possible torsion points:

- $P=(-1,1),-P=(-1,-1), Q=(0,0), R=(2,2)$ and $-R=(2,-2)$.

Implicit differentiation gives that $y^{\prime}=\left(3 x^{2}-2\right) /(2 y)$. The tangent line through P is $y=$ $m(x+1)+1$ where $m=1 / 2$. The x-coordinate of $2 P$ is $m^{2}-(-1)-(-1)=9 / 4$. NagellLutz Theorem implies that $2 P$ has infinite order since its coordinates are not integers. It follows that P, and therefore $-P$, has infinite order, too. The tangent line through R is $y=m(x-2)+2$ where $m=5 / 2$. The x-coordinate of $2 R$ is $(5 / 2)^{2}-(2)-(2)=9 / 4$. Similarly, the points R and $-R$ have infinite orders as well. The remaining point Q has a vertical tangent. Threfore Q has order 2 . We conclude that $\operatorname{Tor}(E(\mathbb{Q}))=\{\infty, Q\}$, a cyclic group of order 2 .

