Name and Surname:
Student Number:

Math 366 - Spring 2017 - METU

Quiz 1

Question: Choose one of the following questions to answer. Clearly indicate the question that you have chosen.

- Find the number of solutions of $25 x+19 y=4444$ where x and y are positive integers.

Solution: Note that $25 \cdot 1+19 \cdot 1=44$. Thus $(101,101)$ is a solution. All solutions are given by

$$
(x, y)=(101+19 t, 101-25 t) \quad t \in \mathbf{Z}
$$

The positive solutions are obtained for $-5 \leq t \leq 4$. We conclude that there are 10 such solutions

- Prove that if $n \not \equiv 2(\bmod 4)$, then there is a primitive Pythagorean triple in which x or y equals n.

Solution: There are two cases:
$-n \equiv 1,3(\bmod 4)$: If n is odd then $n=2 k+1$ for some integer k. Consider the Pythagorean triple $\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right)$ where $a=k+1$ and $b=k$. Note that $n=a^{2}-b^{2}$. Since a and b are consecutive, we have $\operatorname{gcd}(a, b)=1$ and not both a and b are odd. It follows that the Pythagorean triple $\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right)$ is primitive.
$-n \equiv 0(\bmod 4):$ If $4 \mid n$, then choose $a=n / 2$ and $b=1$. Note that $n=2 a b$. We have $\operatorname{gcd}(a, b)=1$ and not both a and b are odd. Thus the Pythagorean triple $\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right)$ is primitive.

