Name and Surname: Student Number:

Math 366 - Spring 2017 - METU

Quiz 1

Question: Choose one of the following questions to answer. Clearly indicate the question that you have chosen.

• Find the number of solutions of 25x + 19y = 4444 where x and y are positive integers.

Solution: Note that $25 \cdot 1 + 19 \cdot 1 = 44$. Thus (101, 101) is a solution. All solutions are given by

(x, y) = (101 + 19t, 101 - 25t) $t \in \mathbf{Z}.$

The positive solutions are obtained for $-5 \le t \le 4$. We conclude that there are 10 such solutions

• Prove that if $n \not\equiv 2 \pmod{4}$, then there is a primitive Pythagorean triple in which x or y equals n.

Solution: There are two cases:

- $-n \equiv 1,3 \pmod{4}$: If n is odd then n = 2k+1 for some integer k. Consider the Pythagorean triple $(a^2 b^2, 2ab, a^2 + b^2)$ where a = k+1 and b = k. Note that $n = a^2 b^2$. Since a and b are consecutive, we have gcd(a, b) = 1 and not both a and b are odd. It follows that the Pythagorean triple $(a^2 b^2, 2ab, a^2 + b^2)$ is primitive.
- $-n \equiv 0 \pmod{4}$: If 4|n, then choose a = n/2 and b = 1. Note that n = 2ab. We have gcd(a, b) = 1 and not both a and b are odd. Thus the Pythagorean triple $(a^2 - b^2, 2ab, a^2 + b^2)$ is primitive.