METU, Spring 2017, Math 366.

Exercise Set 8

- 1. Show that every Euclidean domain is a principal ideal domain. Show that every principal ideal domain is a unique factorization domain. Give an example of a unique factorization domain which is not a principal ideal domain. Give an example of a principal ideal domain which is not a Euclidean domain.
- 2. For each of the following ideals, determine if it is principal or not. If it is principal, find a generator: the ideal (366, 2013) in \mathbb{Z} , the ideal (9 + 7*i*, 4 + 7*i*) in $\mathbb{Z}[i]$, the ideal (2, 1 + $\sqrt{-5}$) in $\mathbb{Z}[\sqrt{-5}]$, the ideal (2, *x*) in $\mathbb{Z}[x]$.
- 3. Let d be a squarefree negative integer. Show that the group of units U of the ring of integers I_d is as follows:
 - For d = -1, $U = \{\pm 1, \pm i\}$ where $i = \sqrt{-1}$,
 - For d = -3, $U = \{\pm 1, \pm \omega, \pm \omega^2\}$ where $\omega = (\sqrt{-3} + 1)/2$,
 - For all other d < 0, $U = \{\pm 1\}$.
- 4. Let R be an integral domain and x, y are non-zero elements of R. Show that the following are equivalent:
 - (a) x and y are associates, (y is an associate of x if y = ux for some unit u in R.)
 - (b) x|y and y|x, (x|y) if there exists $z \in R$ such that y = xz.)
 - (c) (x) = (y).
- 5. Show that $\sqrt{-5}$ is a prime element in I_{-5} . Is $1 + \sqrt{-5}$ a prime element? What about $3 + 2\sqrt{-5}$? Show that 6 and $2 \cdot (1 + \sqrt{-5})$ do not have a greatest common factor in I_{-5} . Do they have a least common multiple?
- 6. Show that I_d is not a UFD for $-d \in \{5, 6, 10, 13, 14, 15, 17, 21, 22, 23, 26, 29, 30\}.$
- 7. Is $10 = (3+i)(3-i) = 2 \cdot 5$ an example of non-unique factorization in $\mathbf{Z}[i]$.
- 8. If R is a Euclidean domain then show that $(\alpha, \beta) = (\gcd(\alpha, \beta))$ for each pair of nonzero elements α and β .
 - (a) Find a generator for the ideal $(x^4 1, x^3 x)$ in $\mathbf{Q}[x]$.
 - (b) Find a generator for the ideal $(2+3\sqrt{-2},3-\sqrt{-2})$ in I_{-2} .
- 9. Let \mathfrak{p} be a proper ideal of a commutative ring R with identity 1_R . Show that the following are equivalent:
 - For all elements $a, b \in R$, $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
 - For all ideals $\mathfrak{a}, \mathfrak{b}$ in R, $\mathfrak{ab} \subseteq \mathfrak{p}$ implies $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.