METU, Spring 2017, Math 366.
 Exercise Set 8

1. Show that every Euclidean domain is a principal ideal domain. Show that every principal ideal domain is a unique factorization domain. Give an example of a unique factorization domain which is not a principal ideal domain. Give an example of a principal ideal domain which is not a Euclidean domain.
2. For each of the following ideals, determine if it is principal or not. If it is principal, find a generator: the ideal $(366,2013)$ in \mathbb{Z}, the ideal $(9+7 i, 4+7 i)$ in $\mathbb{Z}[i]$, the ideal $(2,1+\sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$, the ideal $(2, x)$ in $\mathbb{Z}[x]$.
3. Let d be a squarefree negative integer. Show that the group of units U of the ring of integers I_{d} is as follows:

- For $d=-1, U=\{ \pm 1, \pm i\}$ where $i=\sqrt{-1}$,
- For $d=-3, U=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$ where $\omega=(\sqrt{-3}+1) / 2$,
- For all other $d<0, U=\{ \pm 1\}$.

4. Let R be an integral domain and x, y are non-zero elements of R. Show that the following are equivalent:
(a) x and y are associates, (y is an associate of x if $y=u x$ for some unit u in R.)
(b) $x \mid y$ and $y \mid x,(x \mid y$ if there exists $z \in R$ such that $y=x z$.)
(c) $(x)=(y)$.
5. Show that $\sqrt{-5}$ is a prime element in I_{-5}. Is $1+\sqrt{-5}$ a prime element? What about $3+2 \sqrt{-5}$? Show that 6 and $2 \cdot(1+\sqrt{-5})$ do not have a greatest common factor in I_{-5}. Do they have a least common multiple?
6. Show that I_{d} is not a UFD for $-d \in\{5,6,10,13,14,15,17,21,22,23,26,29,30\}$.
7. Is $10=(3+i)(3-i)=2 \cdot 5$ an example of non-unique factorization in $\mathbf{Z}[i]$.
8. If R is a Euclidean domain then show that $(\alpha, \beta)=(\operatorname{gcd}(\alpha, \beta))$ for each pair of nonzero elements α and β.
(a) Find a generator for the ideal $\left(x^{4}-1, x^{3}-x\right)$ in $\mathbf{Q}[x]$.
(b) Find a generator for the ideal $(2+3 \sqrt{-2}, 3-\sqrt{-2})$ in I_{-2}.
9. Let \mathfrak{p} be a proper ideal of a commutative ring R with identity 1_{R}. Show that the following are equivalent:

- For all elements $a, b \in R, a b \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
- For all ideals $\mathfrak{a}, \mathfrak{b}$ in $R, \mathfrak{a b} \subseteq \mathfrak{p}$ implies $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.

