METU, Spring 2017, Math 366.
 Exercise Set 7

1. Let d be a squarefree integer and let $\alpha=\sqrt{d}+1$ and $\beta=\sqrt{d}-3$. Write $\alpha^{3}, \alpha \beta, \frac{\alpha+1}{\beta}$ and $\frac{\beta}{\alpha-2}$ in the form $r+s \sqrt{d}$ for some rational numbers r and s.
2. Let d_{1} and d_{2} be two distinct squarefree integers. Show that $\mathbb{Q}\left(\sqrt{d_{1}}\right) \neq \mathbb{Q}\left(\sqrt{d_{2}}\right)$.
3. Prove the following facts about the conjugation in $\mathbb{Q}(\sqrt{d})$.

- $\overline{\alpha+\beta}=\bar{\alpha}+\bar{\beta}, \overline{\alpha \beta}=\bar{\alpha} \bar{\beta}, \overline{\alpha / \beta}=\bar{\alpha} / \bar{\beta}$,
- $\alpha=\bar{\alpha}$ if and only if α is rational.

4. Prove the following facts about the trace and norm maps on $\mathbb{Q}(\sqrt{d})$.

- $\operatorname{Tr}(\alpha+\beta)=\operatorname{Tr}(\alpha)+\operatorname{Tr}(\beta)$,
- $N(\alpha \beta)=N(\alpha) N(\beta)$,
- $N(\alpha)=0$ if and only if $\alpha=0$,
- α is a root of the polynomial equation $x^{2}-\operatorname{Tr}(\alpha)+N(\alpha)=0$.

5. Let α be a root of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree three. Consider

$$
\mathbb{Q}(\alpha)=\left\{a+b \alpha+c \alpha^{2}: a, b, c \in \mathbb{Q}\right\} .
$$

Show that $\mathbb{Q}(\alpha)$ is a field. You may start with showing that α^{3} is an element of $\mathbb{Q}(\alpha)$. What about $\frac{1}{\alpha-1}$?
6. Consider $\mathbb{Q}(\sqrt{5})$. Let $\alpha=7-3 \sqrt{5}$ and $\beta=1+2 \sqrt{5}$. Show that $\{\alpha, \beta\}$ is a linearly independent set over the field \mathbb{Q}. Express $\gamma=2017+366 \sqrt{5}$ as a linear combination of α and β.
7. A complex number is called an algebraic integer if it is a root of a monic irreducible polynomial with coefficients from \mathbb{Z}. For each of the following, determine if it is an algebraic integer or not:

$$
366 \sqrt{5}+2017, \frac{\sqrt{7}+1}{2}, \frac{\sqrt[3]{19^{2}}+\sqrt[3]{19}+1}{3}, \frac{\sqrt{2}+\sqrt{-1}}{2}, \frac{2 \sqrt{-27}+3}{6} .
$$

8. Show that I_{d}, the integers of $\mathbb{Q}(\sqrt{d})$, is a subring of complex numbers. Let f be a nonzero integer. Show that $\mathbb{Z}+f I_{d}=\left\{m+f \alpha: m \in \mathbb{Z}, \alpha \in I_{d}\right\}$ is a subring of I_{d}. Show that $\mathbb{Z}+f I_{d}$ is not ideal of I_{d} if $|f| \geq 2$.
9. Determine the set of units in rings I_{3} and I_{-3}.
10. For each of the following rings, show that it is a Euclidean domain by finding a Euclidean function: the integers \mathbb{Z}, the polynomial ring $\mathbb{F}[x]$ where \mathbb{F} is a field, $I_{-1}=$ $\mathbb{Z}[i], I_{-2}=\mathbb{Z}[\sqrt{-2}], I_{-3}=\mathbb{Z}[(\sqrt{-3}+1) / 2]$.
