METU, Spring 2017, Math 366.
 Exercise Set 6

1. Show that the Gaussian integers $\mathbb{Z}[i]$ is a ring.
2. Show that $\alpha=5+2 i$ does not divide $\beta=7+3 i$. Using the Euclidean algorithm express $\operatorname{gcd}(\alpha, \beta)=\alpha \lambda+\beta \eta$ for some Gaussian integers λ and η.
3. Let α and β be Gaussian integers not both 0 . Show that any two greatest common divisors of α and β are associates of one another.
4. Let $R=\mathbb{Z}[\sqrt{-2}]$. Let α, β be elements of R with $\beta \neq 0$. Show that there exist γ and δ such that $\alpha=\beta \gamma+\delta$ with $N(\delta)<N(\beta)$. Apply the algorithm to the specific case $\alpha=5+2 \sqrt{-2}$ and $\beta=3-\sqrt{-2}$
5. Try to prove the division algorithm for $R=\mathbb{Z}[\sqrt{-5}]$. What goes wrong? (Hint: Try to divide $\alpha=1+\sqrt{-5}$ by $\beta=2$.)
6. Classify all prime elements of the ring $R=\mathbb{Z}[\sqrt{-2}]$. Is there an element $\alpha \in R$ of norm 366 or 2015 ?
7. Solve the equation $2 x+(2+i) y=11-3 i$ in the Gaussian integers $x, y \in \mathbb{Z}[i]$.
8. Let α, β be non-zero Gaussian integers. Show that $N(\operatorname{gcd}(\alpha, \beta)) \mid \operatorname{gcd}(N(\alpha), N(\beta))$.
9. Use the arithmetic of the Gaussian integers to determine all solutions to the Diophantine equation $x^{2}+y^{2}=z^{2}$. (Hint: Show that $x+i y=u \alpha^{2}$ for some Gaussian integer $\alpha=m+n i$ and a unit u.)
10. Let $N=p_{1} p_{2} \cdots p_{n}$ where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes of the form $4 k+1$. In how many different ways can you represent N as a sum of two squares? Prove your formula by using the properties of Gaussian integers (Do not use the fact that $r_{2}(n)$ is a multiplicative function).
11. In how many different ways can you represent $3,9,27,81, \ldots$ in the form $x^{2}+2 y^{2}$. Do you see a pattern? Write a formula for the number of representations of 3^{k} in the form $x^{2}+2 y^{2}$. Which facts do you need about the ring $\mathbb{Z}[\sqrt{-2}]$ in order to prove this formula.
12. Let a, b and c be integers such that $b^{2}-4 a c=-4$ and let m be fixed positive integer. Show that the Diophantine equation $a x^{2}+b x y+c y^{2}=m$ has a solution if and only if the Diophantine equation $\tilde{x}^{2}+\tilde{y}^{2}=m$ has a solution. (Hint: A number of the form $k^{2}+1$ has no prime divisor congruent 3 modulo 4).
