METU, Spring 2017, Math 366.
 Exercise Set 1

1. Find the number of solutions of $13 x+31 y=2017$ where x and y are positive integers.
2. Show that the Diophantine equation $a x+b y+c z=d$ has a solution if and only if $\operatorname{gcd}(a, b, c)$ divides d.
3. Find all integer solutions of the following equations:
(a) $2 x+3 y+4 z=5$.
(b) $3 x+5 z+6 y=14$
(c) $30 x+42 y+70 z+105 t=1$.
4. Find all integer solutions of the system of equations $3 x+5 y=1$ and $7 x+11 y=1$.
5. Find all solutions of the following Diophantine equations.
(a) $x^{2}+3 y^{2}=z^{2}$.
(b) $x^{2}+y^{2}=5 z^{2}$.
6. Let $n \geq 3$ be given. Show that there is Pythagorean triple (x, y, z) such that one of x, y, z is n.
7. Find all integer solutions of the system of equations $y+z=1$ and $x^{2}+y^{2}=z^{2}$.
8. Find a Pythagorean triple (x, y, z) such that $x+y+z=366$.
9. For which values of m, is the Diophantine equation $x^{2}-y^{2}=m$ solvable? Show that the equation $x^{2}-y^{2}=m^{3}$ is solvable for any m.
