M ETU
Mathematics Department

Q.1) a) Show that $\sqrt{11}=[3 ; \overline{3,6}]$.

We have $3<\sqrt{11}<4$. Thus $a_{0}=3$. We observe that

$$
3<\frac{1}{\sqrt{11}-3}=\frac{\sqrt{11}+3}{2}<4 .
$$

It follows that $a_{1}=3$. Next, we find that

$$
6<\frac{1}{\frac{\sqrt{11}+3}{2}-3}=\frac{2}{\sqrt{11}-3}=\sqrt{11}+3<7
$$

and $a_{2}=6$. Finally, we see that

$$
3<\frac{1}{\sqrt{11}+3-6}=\frac{\sqrt{11}+3}{2}<4
$$

and therefore $a_{3}=3$. From this point on, the pattern is obvious.
b) Let $\left(x_{n}, y_{n}\right)$ be a solution of $x^{2}-11 y^{2}=1$. For each nonnegative integer n, show that $\left(x_{n+1}, y_{n+1}\right)=\left(10 x_{n}+33 y_{n}, 3 x_{n}+10 y_{n}\right)$ is a solution of $x^{2}-11 y^{2}=1$.

This can be verified by direct substitution. More precisely,

$$
\begin{aligned}
x_{n+1}^{2}-11 y_{n+1}^{2} & =\left(10 x_{n}+33 y_{n}\right)^{2}-11\left(3 x_{n}+10 y_{n}\right)^{2} \\
& =\left(100 x_{n}^{2}+660 x_{n} y_{n}+1089 y_{n}^{2}\right)-11\left(9 x_{n}^{2}+60 x_{n} y_{n}+100 y_{n}^{2}\right)^{2} \\
& =x_{n}^{2}-11 y_{n}^{2}=1 .
\end{aligned}
$$

c) Is there a solution of $x^{2}-11 y^{2}=1$ with $1000<x<2000$?

The fundamental solution of $x^{2}-11 y^{2}=1$ is $\left(x_{1}, y_{1}\right)=(10,3)$. This can be obtained by the first convergent of $[3 ; \overline{3,6}]$, or by trying $y=1,2$ and 3 . All positive solutions are of the form $\left(x_{n}, y_{n}\right)$ where $x_{n}+y_{n} \sqrt{11}:=\left(x_{1}+y_{1} \sqrt{11}\right)^{n}$. We compute that $\left(x_{2}, y_{2}\right)=(199,60)$ and $\left(x_{3}, y_{3}\right)=(3970,1197)$. We know that $x_{k}>x_{3}>2000$ for all $k>3$. Thus we conclude that there is no solution with $1000<x<2000$.
Q.2) Show that an integer n can be represented as the difference of two squares if and only if n is not of the form $4 k+2$.
(\Leftarrow) Any odd integer $n=2 m+1$ can be expressed as the difference of two squares since $(m+1)^{2}-m^{2}=2 m+1$. It remains to consider the integers $n \equiv 0(\bmod 4)$. In such a case, we have $n=4 \ell$ for some integer ℓ and $n=(\ell+1)^{2}-(\ell-1)^{2}$.
(\Rightarrow) A square is either 0 or 1 modulo 4 . If $n=x^{2}-y^{2}$, we see that $n \not \equiv 2(\bmod 4)$.
Q.3) Show that there are infinitely many primitive Pythagorean triples $x^{2}+y^{2}=z^{2}$ with $y-x=7$. For example $(5,12,13),(8,15,17),(48,55,73), \ldots$ etc.

It is enough to find infinitely many a and b such that $a^{2}-b^{2}-2 a b=7$. Using the transformation $u=a-b$ and $v=b$, this equation becomes $u^{2}-2 v^{2}=7$. Since $a=u+v$ and $b=v$, it is enough to show that $u^{2}-2 v^{2}=7$ has infinitely many positive solutions (i.e. $u>0, v>0$).

It is easy to see that $\left(u_{0}, v_{0}\right)=(3,1)$ is a solution of $u^{2}-2 v^{2}=7$. Define $\alpha=3+\sqrt{2}$ with $N(\alpha)=7$ and $\varepsilon=3+2 \sqrt{2}$ with $N(\varepsilon)=1$. Observe that $N\left(\alpha \cdot \varepsilon^{n}\right)=N(\alpha) N(\varepsilon)^{n}=7 \cdot 1^{n}=7$ for all $n \in \mathbb{N}$. We define $\left(u_{n}, v_{n}\right)$ as follows

$$
u_{n}+v_{n} \sqrt{2}=\alpha \cdot \varepsilon^{n}
$$

Observe that

$$
u_{n}^{2}-2 v_{n}^{2}=N\left(u_{n}+v_{n} \sqrt{2}\right)=N\left(\alpha \cdot \varepsilon^{n}\right)=7
$$

Moreover $v_{n+1}=2 u_{n}+3 v_{n}>v_{n}$ for each $n \in \mathbb{N}$. The equation $u^{2}-2 v^{2}=7$ has infinitely many positive solutions.
Q.4) Consider the Gaussian integers $\alpha=7-i$ and $\beta=3+4 i$.
a) Represent α and β as a product of Gaussian primes. Show that $\beta \nmid \alpha$ in $\mathbb{Z}[i]$.

We have $\alpha=(1+i)(2-i)^{2}$ and $\beta=(2+i)^{2}$. The Gaussian integer α has no prime factor divisible by $2+i$, whereas β has. Since $\mathbb{Z}[i]$ is a UFD, we conclude that $\beta \nmid \alpha$.
b) Show that $\operatorname{gcd}(\alpha, \beta)=1$ by using the Euclidean algorithm.

We apply the Euclidean algorithm and find that

$$
\begin{aligned}
\alpha & =\beta(1-i)-2 i \\
\beta & =(-2 i)(-2+2 i)-1 \\
-2 i & =(-1)(2 i)+0
\end{aligned}
$$

We conlude that $\operatorname{gcd}(\alpha, \beta)=-1$. Recall that $\operatorname{gcd}(\alpha, \beta)$ in $\mathbb{Z}[i]$ is well defined up to a unit.

c) Find Gaussian integers η and λ such that $\alpha \eta+\beta \lambda=1$.

Applying the Euclidean algorithm in reverse, we find that

$$
\begin{aligned}
1 & =-\beta+(-2 i)(-2+2 i) \\
& =-\beta+(\alpha-\beta(1-i))(-2+2 i) \\
& =\alpha(-2+2 i)+\beta(-1-4 i) .
\end{aligned}
$$

We may choose $\eta=-2+2 i$ and $\lambda=-1-4 i$.
d) Find Gaussian integers η and λ such that $\alpha \eta+\beta \lambda=1$ and $\eta \in \mathbb{Z}$.

Observe that $(\eta, \lambda)=(-2+2 i+x \beta,-1-4 i-x \alpha)$ satisfies the condition $\alpha \eta+\beta \lambda=1$ for each $x \in \mathbb{Z}[i]$. If $x=a+b i$, then the imaginary part of η is $4 a+3 b+2$. Choosing $a=1$ and $b=-2$, we find that $(\eta, \lambda)=(9,-6+11 i)$ satisfies the desired conditions.
Q.5) Prove or disprove: All integers can be expressed as a sum of two Gaussian integer squares. (For example $7=(4+0 \cdot i)^{2}+(0+3 \cdot i)^{2}$.)

We know, by (Q.2), that any integer which is not of the form $4 k+2$ can be expressed as the difference of two squares. Such an integer can also be expressed as a sum of two Gaussian integer squares. More precisely, it can be expressed in the form $(x+0 \cdot i)^{2}+(0+y \cdot i)^{2}=x^{2}-y^{2}$. It remains to consider integers n which are of the form $4 k+2$. Note that

$$
\begin{aligned}
4 k+2 & =2(2 k+1) \\
& =2\left((k+1)^{2}-k^{2}\right) \\
& =\left[(k+1)^{2}+2 k(k+1) i-k^{2}\right]+\left[(k+1)^{2}-2 k(k+1)-k^{2}\right] \\
& =(k+1+k i)^{2}+(k+1-k i)^{2} .
\end{aligned}
$$

Therefore any integer can be expressed as a sum of two Gaussian integer squares.
Q.6) Recall that we have mentioned in class that $r_{2}(n) / 4$ is a multiplicative function but we didn't prove it. This question concerns a special case. If p and q are distinct primes, then show that $r_{2}(p q) / 4=\left[r_{2}(p) / 4\right] \cdot\left[r_{2}(q) / 4\right]$.

It is trivially true that $r_{2}(2)=4$. Recall that $r_{2}(p)=0$ if $p \equiv 3(\bmod 4)$. Moreover, $r_{2}(p)=8$ if $p \equiv 1(\bmod 4)$ since the representation $p=x^{2}+y^{2}$ is unique up to the order and signs.
Now let us consider the formula $r_{2}(p q) / 4=\left[r_{2}(p) / 4\right] \cdot\left[r_{2}(q) / 4\right]$. A positive integer $n=p q$ can be represented as a sum of two squares if and only if its square free part has no prime factor of the form $4 k+3$. If one of p or q is of the form $4 k+3$, then both sides are zero and the formula is trivially true.

If $2 \in\{p, q\}$, then without loss of generality $p=2$ and q is of the form $4 k+1$. We have $r_{2}(p)=4$ and $r_{2}(q)=8$. Let $\pi \in \mathbb{Z}[i]$ be a Gaussian prime of norm q. An element $\alpha \in \mathbb{Z}[i]$ of norm $p q$ must be of the form

$$
\alpha=i^{k_{1}}(1+i) \pi^{k_{2}} \bar{\pi}^{1-k_{2}}
$$

where $0 \leq k_{1} \leq 3$ and $0 \leq k_{2} \leq 1$. There are 8 such elements. Thus $r_{2}(p q) / 4=2$ and this finishes the proof for this case.
It remains to consider both p and q are of the form $4 k+1$. We have $r_{2}(p)=r_{2}(q)=8$. Let π_{1} and π_{2} be two Gaussian primes of norms p and q, respectively. An element $\alpha \in \mathbb{Z}[i]$ of norm $p q$ must be of the form

$$
\alpha=i^{k_{1}} \pi_{1}^{k_{2}} \bar{\pi}_{1}^{1-k_{2}} \pi_{2}^{k_{3}} \bar{\pi}_{2}^{1-k_{3}}
$$

where $0 \leq k_{1} \leq 3$ and $0 \leq k_{2}, k_{3} \leq 1$. There are 16 such elements. Thus $r_{2}(p q) / 4=4$ and this finishes the proof

