O METU
Mathematics Department

1956

Math 366 Elementary Number Theory II  Spring 2017 MIDTERM 2
Kiigiiksakalli Name : Student Number :
April 27, 2017 )
17:40 — 19:40 Last Name : Signature :
P.1 P.2 P.3 P4 Total

SHOW YOUR ORGANIZED WORK
25 25 25 25

100

GOOD LUCK!

Q.1) a) Show that v/11 = [3;3,6].

We have 3 < V11 < 4. Thus ag = 3. We observe that

3 < 1 V11 +3 <4
VII-3 2 '
It follows that a; = 3. Next, we find that
1 2

6 < @+3_3:ﬁ73:\/ﬁ+3<7,

and as = 6. Finally, we see that

1 v11
3 < = +3<4,
V11+3-6 2

and therefore ag = 3. From this point on, the pattern is obvious.

b) Let (z,,%,) be a solution of 22 — 11y? = 1. For each nonnegative integer n, show
that (2,41, Ynr1) = (102, + 33y, 31, + 10y,) is a solution of 2% — 11y = 1.

This can be verified by direct substitution. More precisely,

a2 — 11y2., = (102, + 33y,)* — 11(3z,, + 10y,)?

= (10022 4 6602y, + 1089y2) — 11(922 + 602,y,, + 100y2)?

=22 — 112 = 1.

c) Is there a solution of #? — 11y? = 1 with 1000 < z < 20007

The fundamental solution of x? — 11y% = 1 is (x1,y1) = (10, 3). This can be obtained by the first convergent of [3;3,6], or
by trying y = 1,2 and 3. All positive solutions are of the form (z,,,y,) where z, + y, V11 := (21 + y1v/11)". We compute
that (z2,y2) = (199,60) and (z3,ys) = (3970,1197). We know that x; > x3 > 2000 for all ¥ > 3. Thus we conclude that

there is no solution with 1000 < z < 2000.




Q.2) Show that an integer n can be represented as the difference of two squares if and
only if n is not of the form 4k + 2.

(<) Any odd integer n = 2m+ 1 can be expressed as the difference of two squares since (m+1)? —m? = 2m+ 1. It remains
to consider the integers n = 0 (mod 4). In such a case, we have n = 4/ for some integer £ and n = (¢ + 1) — (¢ — 1)%.

(=) A square is either 0 or 1 modulo 4. If n = 2% — y2, we see that n # 2 (mod 4).

Q.3) Show that there are infinitely many primitive Pythagorean triples ? + y* = 22

with y — 2 = 7. For example (5,12,13), (8, 15, 17), (48,55, 73), .. . etc.

It is enough to find infinitely many a and b such that a? — b — 2ab = 7. Using the transformation u = @ — b and v = b,
this equation becomes u? — 2v? = 7. Since a = v + v and b = v, it is enough to show that u? — 2v? = 7 has infinitely many
positive solutions (i.e. u > 0,v > 0).

It is easy to see that (ug,vo) = (3,1) is a solution of u? — 2v? = 7. Define a = 3+ v/2 with N(a) = 7 and € = 3 + 2v/2 with
N(e) = 1. Observe that N(a-€") = N(a)N(g)* =7-1" =7 for all n € N. We define (uy,,v,) as follows

Up +vpV2 =™

Observe that
ufl 721),21 :N(un+vn\/§) =N(a-e")=T.

Moreover vy, +1 = 2u,, + 3v, > v, for each n € N. The equation u? — 202 = 7 has infinitely many positive solutions.



Q.4) Consider the Gaussian integers a =7 — i and = 3 + 4.

a) Represent v and 3 as a product of Gaussian primes. Show that 81 a in Z[i].

We have o = (1+14)(2 —4)? and 8 = (2+14)%. The Gaussian integer  has no prime factor divisible by 2 + 4, whereas 3 has.
Since Z[i] is a UFD, we conclude that § t a.

b) Show that gcd(a, 8) = 1 by using the Euclidean algorithm.

We apply the Euclidean algorithm and find that

a=pB(1—i)—2i
B=(=2i)(-2+2i)—1
—2i = (=1)(2i) + 0

We conlude that ged(a, 8) = —1. Recall that ged(e, ) in Z[i] is well defined up to a unit.

c) Find Gaussian integers n and A such that an+ g\ = 1.

Applying the Euclidean algorithm in reverse, we find that

1= =B+ (=2i)(—2+ 2i)
=B+ (a—B(1—1i))(-2+2)
= a(—2 4 20) + B(—1 — 4i).

We may choose n = —2 + 24 and A = —1 — 44.

d) Find Gaussian integers n and A such that an+ A =1 and n € Z.

Observe that (9, A) = (=24 2i+ x5, —1 — 4i — x«) satisfies the condition an+ S\ = 1 for each z € Z[i]. If x = a + bi, then
the imaginary part of 7 is 4a + 3b 4+ 2. Choosing a = 1 and b = —2, we find that (n, \) = (9, —6 + 11¢) satisfies the desired

conditions.



Q.5) Prove or disprove: All integers can be expressed as a sum of two Gaussian integer
squares. (For example 7= (4+0-4) + (0 +3-1)%)

We know, by (Q.2), that any integer which is not of the form 4k + 2 can be expressed as the difference of two squares.
Such an integer can also be expressed as a sum of two Gaussian integer squares. More precisely, it can be expressed in the
form (z +0-i)% + (0 +y-i)? = 2% — y2. It remains to consider integers n which are of the form 4k + 2. Note that

4k +2=2(2k + 1)

2((k+1)* — k%)

[(k+1)%+2k(k+1)i — k*] + [(k+1)® — 2k(k + 1) — k7]
= (k+1+ki)?+ (E+1— ki)

Therefore any integer can be expressed as a sum of two Gaussian integer squares.

Q.6) Recall that we have mentioned in class that r9(n)/4 is a multiplicative function
but we didn’t prove it. This question concerns a special case. If p and ¢ are distinct

primes, then show that ro(pq)/4 = [ro(p)/4] - [r2(q) /4]

It is trivially true that ro(2) = 4. Recall that r3(p) = 0 if p = 3 (mod 4). Moreover, r2(p) = 8 if p = 1 (mod 4) since the
representation p = 2 + y? is unique up to the order and signs.

Now let us consider the formula r2(pq)/4 = [r2(p)/4] - [r2(q)/4]. A positive integer n = pg can be represented as a sum of
two squares if and only if its square free part has no prime factor of the form 4k + 3. If one of p or ¢ is of the form 4k + 3,
then both sides are zero and the formula is trivially true.

If 2 € {p,q}, then without loss of generality p = 2 and ¢ is of the form 4k + 1. We have r3(p) = 4 and ry(q) = 8. Let
7 € Z[i] be a Gaussian prime of norm ¢. An element o € Z[i] of norm pg must be of the form

o =P (1 +d)rhegt—he

where 0 < k1 < 3 and 0 < ko < 1. There are 8 such elements. Thus ro(pg)/4 = 2 and this finishes the proof for this case.

It remains to consider both p and ¢ are of the form 4k + 1. We have r2(p) = r2(q) = 8. Let m; and w3 be two Gaussian
primes of norms p and g, respectively. An element « € Z[i] of norm pq must be of the form

o = ke The phag —ks

where 0 < k1 <3 and 0 < ko, k3 < 1. There are 16 such elements. Thus r2(pg)/4 = 4 and this finishes the proof



