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Q.1) a) Show that
√

11 = [3; 3, 6 ].

We have 3 <
√

11 < 4. Thus a0 = 3. We observe that

3 <
1√

11− 3
=

√
11 + 3

2
< 4.

It follows that a1 = 3. Next, we find that

6 <
1

√
11+3
2 − 3

=
2√

11− 3
=
√

11 + 3 < 7,

and a2 = 6. Finally, we see that

3 <
1√

11 + 3− 6
=

√
11 + 3

2
< 4,

and therefore a3 = 3. From this point on, the pattern is obvious.

b) Let (xn, yn) be a solution of x2 − 11y2 = 1. For each nonnegative integer n, show
that (xn+1, yn+1) = (10xn + 33yn, 3xn + 10yn) is a solution of x2 − 11y2 = 1.

This can be verified by direct substitution. More precisely,

x2n+1 − 11y2n+1 = (10xn + 33yn)2 − 11(3xn + 10yn)2

= (100x2n + 660xnyn + 1089y2n)− 11(9x2n + 60xnyn + 100y2n)2

= x2n − 11y2n = 1.

c) Is there a solution of x2 − 11y2 = 1 with 1000 < x < 2000?

The fundamental solution of x2 − 11y2 = 1 is (x1, y1) = (10, 3). This can be obtained by the first convergent of [3; 3, 6 ], or
by trying y = 1, 2 and 3. All positive solutions are of the form (xn, yn) where xn + yn

√
11 := (x1 + y1

√
11)n. We compute

that (x2, y2) = (199, 60) and (x3, y3) = (3970, 1197). We know that xk > x3 > 2000 for all k > 3. Thus we conclude that
there is no solution with 1000 < x < 2000.



Q.2) Show that an integer n can be represented as the difference of two squares if and
only if n is not of the form 4k + 2.

(⇐) Any odd integer n = 2m+1 can be expressed as the difference of two squares since (m+1)2−m2 = 2m+1. It remains
to consider the integers n ≡ 0 (mod 4). In such a case, we have n = 4` for some integer ` and n = (`+ 1)2 − (`− 1)2.

(⇒) A square is either 0 or 1 modulo 4. If n = x2 − y2, we see that n 6≡ 2 (mod 4).

Q.3) Show that there are infinitely many primitive Pythagorean triples x2 + y2 = z2

with y − x = 7. For example (5, 12, 13), (8, 15, 17), (48, 55, 73), . . . etc.

It is enough to find infinitely many a and b such that a2 − b2 − 2ab = 7. Using the transformation u = a − b and v = b,
this equation becomes u2 − 2v2 = 7. Since a = u+ v and b = v, it is enough to show that u2 − 2v2 = 7 has infinitely many
positive solutions (i.e. u > 0, v > 0).

It is easy to see that (u0, v0) = (3, 1) is a solution of u2− 2v2 = 7. Define α = 3 +
√

2 with N(α) = 7 and ε = 3 + 2
√

2 with
N(ε) = 1. Observe that N(α · εn) = N(α)N(ε)n = 7 · 1n = 7 for all n ∈ N. We define (un, vn) as follows

un + vn
√

2 = α · εn.

Observe that
u2n − 2v2n = N(un + vn

√
2) = N(α · εn) = 7.

Moreover vn+1 = 2un + 3vn > vn for each n ∈ N. The equation u2 − 2v2 = 7 has infinitely many positive solutions.



Q.4) Consider the Gaussian integers α = 7− i and β = 3 + 4i.

a) Represent α and β as a product of Gaussian primes. Show that β - α in Z[i].

We have α = (1 + i)(2− i)2 and β = (2 + i)2. The Gaussian integer α has no prime factor divisible by 2 + i, whereas β has.

Since Z[i] is a UFD, we conclude that β - α.

b) Show that gcd(α, β) = 1 by using the Euclidean algorithm.

We apply the Euclidean algorithm and find that

α = β(1− i)− 2i

β = (−2i)(−2 + 2i)− 1

−2i = (−1)(2i) + 0

We conlude that gcd(α, β) = −1. Recall that gcd(α, β) in Z[i] is well defined up to a unit.

c) Find Gaussian integers η and λ such that αη + βλ = 1.

Applying the Euclidean algorithm in reverse, we find that

1 = −β + (−2i)(−2 + 2i)

= −β + (α− β(1− i))(−2 + 2i)

= α(−2 + 2i) + β(−1− 4i).

We may choose η = −2 + 2i and λ = −1− 4i.

d) Find Gaussian integers η and λ such that αη + βλ = 1 and η ∈ Z.

Observe that (η, λ) = (−2 + 2i+ xβ,−1− 4i− xα) satisfies the condition αη+ βλ = 1 for each x ∈ Z[i]. If x = a+ bi, then

the imaginary part of η is 4a+ 3b+ 2. Choosing a = 1 and b = −2, we find that (η, λ) = (9,−6 + 11i) satisfies the desired

conditions.



Q.5) Prove or disprove: All integers can be expressed as a sum of two Gaussian integer
squares. (For example 7 = (4 + 0 · i)2 + (0 + 3 · i)2.)

We know, by (Q.2), that any integer which is not of the form 4k + 2 can be expressed as the difference of two squares.
Such an integer can also be expressed as a sum of two Gaussian integer squares. More precisely, it can be expressed in the
form (x+ 0 · i)2 + (0 + y · i)2 = x2 − y2. It remains to consider integers n which are of the form 4k + 2. Note that

4k + 2 = 2(2k + 1)

= 2((k + 1)2 − k2)

=
[
(k + 1)2 + 2k(k + 1)i− k2

]
+

[
(k + 1)2 − 2k(k + 1)− k2

]
= (k + 1 + ki)2 + (k + 1− ki)2.

Therefore any integer can be expressed as a sum of two Gaussian integer squares.

Q.6) Recall that we have mentioned in class that r2(n)/4 is a multiplicative function
but we didn’t prove it. This question concerns a special case. If p and q are distinct
primes, then show that r2(pq)/4 = [r2(p)/4] · [r2(q)/4].

It is trivially true that r2(2) = 4. Recall that r2(p) = 0 if p ≡ 3 (mod 4). Moreover, r2(p) = 8 if p ≡ 1 (mod 4) since the
representation p = x2 + y2 is unique up to the order and signs.

Now let us consider the formula r2(pq)/4 = [r2(p)/4] · [r2(q)/4]. A positive integer n = pq can be represented as a sum of
two squares if and only if its square free part has no prime factor of the form 4k + 3. If one of p or q is of the form 4k + 3,
then both sides are zero and the formula is trivially true.

If 2 ∈ {p, q}, then without loss of generality p = 2 and q is of the form 4k + 1. We have r2(p) = 4 and r2(q) = 8. Let
π ∈ Z[i] be a Gaussian prime of norm q. An element α ∈ Z[i] of norm pq must be of the form

α = ik1(1 + i)πk2π1−k2

where 0 ≤ k1 ≤ 3 and 0 ≤ k2 ≤ 1. There are 8 such elements. Thus r2(pq)/4 = 2 and this finishes the proof for this case.

It remains to consider both p and q are of the form 4k + 1. We have r2(p) = r2(q) = 8. Let π1 and π2 be two Gaussian
primes of norms p and q, respectively. An element α ∈ Z[i] of norm pq must be of the form

α = ik1πk2
1 π

1−k2
1 πk3

2 π
1−k3
2

where 0 ≤ k1 ≤ 3 and 0 ≤ k2, k3 ≤ 1. There are 16 such elements. Thus r2(pq)/4 = 4 and this finishes the proof


