

M E T U Mathematics Department

Math 366	Ele	ementar	y Number Theory II	Spring 2017	MIDTERM 1
Küçüksakallı		Name :		Student Number :	
March 30, 2017 17:40 – 19:40		Last Name :		Signature :	
P.1 P.2 P.3 25 25 25	3 25	P.4 25	SHOW YOUR ORGA	NIZED WORK	Total 100
			GOOD LUCK		

Q.1) Let (x, y, z) be a Pythagorean triple. The aim of this question is to show that 60|xyz by the following steps:

a) Show that 3|xyz.

Note that switching x and y do not change the product xyz. Without losing of generality, we can assume that a Pythagorean triple is of the form

$$[x, y, z] = \left[\pm d(a^2 - b^2), \pm d(2ab), \pm d(a^2 + b^2) \right]$$

for some $a, b \in \mathbb{Z}$ with a > b > 0, gcd(a, b) = 1 and $a + b \equiv 1 \pmod{2}$.

If 3|a or 3|b then we are done. Because, in such a case 3|y and therefore 3|xyz. Otherwise $a^2 \equiv b^2 \equiv 1 \pmod{3}$. In that case, 3|x and therefore 3|xyz.

b) Show that 4|xyz.

Either a or b is even. As a result y must be divisible by 4. As a result the product xyz is divisible by 4.

c) Show that 5|xyz.

If 5|a or 5|b then we are done. Because, in such a case 5|y and therefore 5|xyz. Otherwise a^2 and b^2 are congruent to 1 or 4 modulo 5. If a^2 and b^2 are congruent to the same number modulo 5, then x is divisible by 5. If a^2 and b^2 are congruent to different numbers modulo 5, then z is divisible by 5. In either case 5|xyz.

Q.2) Let c be a positive integer and let $E: y^2 = x^3 + 4c^4x$. **a)** Verify that $P = (2c^2, 4c^3)$ is an element of $E(\mathbb{Q})$.

Note that $(4c^3)^2 = 16c^6 = 8c^6 + 8c^6 = (2c^2)^3 + 4c^4(2c^2)$.

b) Write an equation for the tangent line at P.

Implicit differentiation gives $y' = (3x^2 + 4c^4)/(2y)$. As a result the slope m at the point P is

$$m = \frac{3(2c^2)^2 + 4c^4}{2 \cdot 4c^3} = 2c.$$

The tangent line at P is given by $\ell : y = 2c(x - 2c^2) + 4c^3$.

c) Find the order of P.

Note that (0,0) is a two torsion point of the elliptic curve E. The line ℓ intersects E at (0,0) and from this we see that $P \oplus P = (0,0)$. Since 2P has order 2, the point P must have order 4.

Q.3) Show that the equation $3x^2 + 4y^2 = 5z^2$ has no solution in positive integers.

Assume to the contrary that the equation has a solution (x, y, z) in positive integers. Without loss of generality, we can assume that gcd(x, y, z) = 1. If 3|z, then 3|y and therefore 3|x, which is impossible. Thus $z \neq 0 \pmod{3}$. Reducing everything modulo 3, we obtain that $y^2 \equiv 2z^2 \equiv 2 \pmod{3}$. This is a contradiction.

Q.4) Consider the Diophantine equation $x^2 + 2y^2 = 3z^2$.

a) Show that (c, c, c) is a solution for each integer c.

Note that $c^2 + 2c^2 = 3c^2$.

b) Find all solutions. Verify your formula by giving a few examples.

Suppose that $z \neq 0$. Then the question is equivalent to finding all rational points on the ellipse $a^2 + 2b^2 = 3$ where a = x/z and b = y/z.

Consider the line $\ell : b = r(a-1) + 1$ which passes through (1,1) with rational slope r. The line ℓ intersects the ellipse at a point $P = (P_a, P_b)$ with rational coordinates. Moreover any line which passes through a rational point and (1,1) would be of this form.

Putting b = r(a-1) + 1 in the equation $a^2 + 2b^2 - 3 = 0$, we get

$$a^{2} + 2(r^{2}(a-1)^{2} + 2r(a-1) + 1) - 3 = (a-1)[(2r^{2}+1)a + (-2r^{2}+4r+1)] = 0.$$

It follows that

$$P_a = \frac{2r^2 - 4r - 1}{2r^2 + 1}$$
 and $P_b = r(P_a - 1) + 1 = \frac{-2r^2 - 2r + 1}{2r^2 + 1}$.

Putting r = m/n, we find all solutions [x, y, z] to the Diophantine equation $x^2 + 2y^2 = 3z^2$

$$[x, y, z] = \left[\pm d(2m^2 - 4nm - n^2), \pm d(-2m^2 - 2nm + n^2), \pm d(2m^2 + n^2) \right]$$

for some integers m, n and d. For example if m = 2, n = 1 and d = 1, we have a solution (-1, -11, 9). Another solution (5, -23, 19) can be found by putting m = 3, n = 1 and d = 1.

Q.5) Find all solutions of the Diophantine equation $(x^2+2xy+y^2)^2+16 = (y-x+366)^4$.

The equation $a^4 + b^4 = c^4$ has no solutions in positive integers. The above equation is of this form with a = x + y, b = 2and c = y - x + 366. We must have x + y = 0 and $y - x + 366 = \pm 2$. From these two equations, we obtain $-2x + 366 = \pm 2$. There are only two solutions, namely (182, -182) and (184, -184), to the original equation.

Q.6) a) Represent $m = 99^2 - 2^2$ as a sum of two squares.

It is easy to see that $97 = 9^2 + 4^2$ and $101 = 10^2 + 1$. We have $(9 + 4i) \cdot (10 + i) = 86 + 49i$. Thus $m = 86^2 + 49^2$.

b) Show that $n = 366^3 + 2^3$ is not representable as a sum of two squares.

We have $n = (366 + 2)(366^2 - 2 \cdot 366 + 2^2)$. Observe that $368 = 2^4 \cdot 23$ and

$$366^2 - 2 \cdot 366 + 2^2 \equiv (-2)^2 - 2(-2) + 2^2 \equiv 12 \pmod{23}.$$

The square free part of n is divisible by 23 which is a prime of the form 4k + 3. We conclude that n can not be represented as a sum of two squares.