M ETU Mathematics Department				
Math 366 Elementary Number Theory II \quad Spring 2017 MIDTERM 1				
Küçüksakallı March 30, 2017 17:40-19:40	Name : Last Nam		Student Number Signature :	
	${ }_{25}$	SHOW YOUR ORG	NIZED WORK	Total 100
		GOOD LUCK		

Q.1) Let (x, y, z) be a Pythagorean triple. The aim of this question is to show that $60 \mid x y z$ by the following steps:
a) Show that $3 \mid x y z$.

Note that switching x and y do not change the product $x y z$. Without losing of generality, we can assume that a Pythagorean triple is of the form

$$
[x, y, z]=\left[\pm d\left(a^{2}-b^{2}\right), \pm d(2 a b), \pm d\left(a^{2}+b^{2}\right)\right]
$$

for some $a, b \in \mathbb{Z}$ with $a>b>0, \operatorname{gcd}(a, b)=1$ and $a+b \equiv 1(\bmod 2)$.
If $3 \mid a$ or $3 \mid b$ then we are done. Because, in such a case $3 \mid y$ and therefore $3 \mid x y z$. Otherwise $a^{2} \equiv b^{2} \equiv 1(\bmod 3)$. In that case, $3 \mid x$ and therefore $3 \mid x y z$.
b) Show that $4 \mid x y z$.

Either a or b is even. As a result y must be divisible by 4 . As a result the product $x y z$ is divisible by 4 .
c) Show that $5 \mid x y z$.

If $5 \mid a$ or $5 \mid b$ then we are done. Because, in such a case $5 \mid y$ and therefore $5 \mid x y z$. Otherwise a^{2} and b^{2} are congreunt to 1 or 4 modulo 5 . If a^{2} and b^{2} are congruent to the same number modulo 5 , then x is divisible by 5 . If a^{2} and b^{2} are congruent to different numbers modulo 5 , then z is divisible by 5 . In either case $5 \mid x y z$.
Q.2) Let c be a positive integer and let $E: y^{2}=x^{3}+4 c^{4} x$.
a) Verify that $P=\left(2 c^{2}, 4 c^{3}\right)$ is an element of $E(\mathbb{Q})$.

Note that $\left(4 c^{3}\right)^{2}=16 c^{6}=8 c^{6}+8 c^{6}=\left(2 c^{2}\right)^{3}+4 c^{4}\left(2 c^{2}\right)$.

b) Write an equation for the tangent line at P.

Implicit differentiation gives $y^{\prime}=\left(3 x^{2}+4 c^{4}\right) /(2 y)$. As a result the slope m at the point P is

$$
m=\frac{3\left(2 c^{2}\right)^{2}+4 c^{4}}{2 \cdot 4 c^{3}}=2 c
$$

The tangent line at P is given by $\ell: y=2 c\left(x-2 c^{2}\right)+4 c^{3}$.

c) Find the order of P.

Note that $(0,0)$ is a two torsion point of the elliptic curve E. The line ℓ intersects E at $(0,0)$ and from this we see that $P \oplus P=(0,0)$. Since $2 P$ has order 2 , the point P must have order 4 .
Q.3) Show that the equation $3 x^{2}+4 y^{2}=5 z^{2}$ has no solution in positive integers.

Assume to the contrary that the equation has a solution (x, y, z) in positive integers. Without loss of generality, we can assume that $\operatorname{gcd}(x, y, z)=1$. If $3 \mid z$, then $3 \mid y$ and therefore $3 \mid x$, which is impossible. Thus $z \not \equiv 0(\bmod 3)$. Reducing everything modulo 3 , we obtain that $y^{2} \equiv 2 z^{2} \equiv 2(\bmod 3)$. This is a contradiction.
Q.4) Consider the Diophantine equation $x^{2}+2 y^{2}=3 z^{2}$.
a) Show that (c, c, c) is a solution for each integer c.

Note that $c^{2}+2 c^{2}=3 c^{2}$.

b) Find all solutions. Verify your formula by giving a few examples.

Suppose that $z \neq 0$. Then the question is equivalent to finding all rational points on the ellipse $a^{2}+2 b^{2}=3$ where $a=x / z$ and $b=y / z$.
Consider the line $\ell: b=r(a-1)+1$ which passes through $(1,1)$ with rational slope r. The line ℓ intersects the ellipse at a point $P=\left(P_{a}, P_{b}\right)$ with rational coordinates. Moreover any line which passes through a rational point and $(1,1)$ would be of this form.
Putting $b=r(a-1)+1$ in the equation $a^{2}+2 b^{2}-3=0$, we get

$$
a^{2}+2\left(r^{2}(a-1)^{2}+2 r(a-1)+1\right)-3=(a-1)\left[\left(2 r^{2}+1\right) a+\left(-2 r^{2}+4 r+1\right)\right]=0
$$

It follows that

$$
P_{a}=\frac{2 r^{2}-4 r-1}{2 r^{2}+1} \quad \text { and } \quad P_{b}=r\left(P_{a}-1\right)+1=\frac{-2 r^{2}-2 r+1}{2 r^{2}+1} .
$$

Putting $r=m / n$, we find all solutions $[x, y, z]$ to the Diophantine equation $x^{2}+2 y^{2}=3 z^{2}$

$$
[x, y, z]=\left[\pm d\left(2 m^{2}-4 n m-n^{2}\right), \pm d\left(-2 m^{2}-2 n m+n^{2}\right), \pm d\left(2 m^{2}+n^{2}\right)\right]
$$

for some integers m, n and d. For example if $m=2, n=1$ and $d=1$, we have a solution $(-1,-11,9)$. Another solution $(5,-23,19)$ can be found by putting $m=3, n=1$ and $d=1$.

The equation $a^{4}+b^{4}=c^{4}$ has no solutions in positive integers. The above equation is of this form with $a=x+y, b=2$ and $c=y-x+366$. We must have $x+y=0$ and $y-x+366= \pm 2$. From these two equations, we obtain $-2 x+366= \pm 2$. There are only two solutions, namely $(182,-182)$ and $(184,-184)$, to the original equation.
Q.6) a) Represent $m=99^{2}-2^{2}$ as a sum of two squares.

It is easy to see that $97=9^{2}+4^{2}$ and $101=10^{2}+1$. We have $(9+4 i) \cdot(10+i)=86+49 i$. Thus $m=86^{2}+49^{2}$.
b) Show that $n=366^{3}+2^{3}$ is not representable as a sum of two squares.

We have $n=(366+2)\left(366^{2}-2 \cdot 366+2^{2}\right)$. Observe that $368=2^{4} \cdot 23$ and

$$
366^{2}-2 \cdot 366+2^{2} \equiv(-2)^{2}-2(-2)+2^{2} \equiv 12 \quad(\bmod 23)
$$

The square free part of n is divisible by 23 which is a prime of the form $4 k+3$. We conclude that n can not be represented as a sum of two squares.

