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Q.1) In this question, you are allowed to use the fact that Z[
√
−2 ] is a Euclidean

domain. Let (x, y, z) be a solution of the Diophantine equation x2 + 2y2 = z2 with
gcd(x, y, z) = 1.

a) Show that gcd(x+ y
√
−2, x− y

√
−2) = 1 in Z[

√
−2 ].

Solution: A greatest common divisor exists for each nonzero pair of elements in a Euclidean domain. Let δ be a greatest

common divisor of α = x + y
√
−2 and β = x − y

√
−2 in Z[

√
−2 ]. We have δ|2x = α + β and δ|2y

√
−2 = α − β. Since

gcd(x, y, z) = 1 in Z, we have gcd(x, y) = 1 in Z, too. Moreover gcd(x, y) = 1 in Z[
√
−2 ] as well. It follows that δ|2 because

Z[
√
−2 ] is a UFD. Assume that

√
−2|δ. We will obtain a contradiction and this will finish the proof. If

√
−2|δ then

√
−2|α

and therefore
√
−2|x in Z[

√
−2 ]. It follows that x must be an even integer. This implies that z is even since x2 + 2y2 = z2.

Finally, y is even too. Therefore gcd(x, y, z) = 2, a contradiction.

b) Show that x+ y
√
−2 is of the form ±γ2 for some γ ∈ Z[

√
−2 ].

Solution: If α = x+ y
√
−2 is a unit then α = ±1 and we are done. Otherwise let π be an irreducible element of Z[

√
−2 ]

dividing α. If π|α, then π|z2 = αβ. Since π is prime, we have π|z (prime=irreducible in a UFD). It follows that π2|z2 = αβ.

In the previous part, we have seen that gcd(α, β) = 1. Thus π2|α. Canceling π2 from both sides of the equation αβ = z2,

we inductively see that α and β are both perfect squares up to units in Z[
√
−2].

c) Using the previous part, determine all solutions of x2 +2y2 = z2 with gcd(x, y, z) = 1.

Solution: An arbitrary element γ ∈ Z[
√
−2 ] is of the form a+ b

√
−2 for some integers a and b. We have

γ2 = (a+ b
√
−2)2 = a2 − 2b2︸ ︷︷ ︸

x

+ 2ab︸︷︷︸
y

√
−2.

It follows that, each solution of x2 + 2y2 = z2 with gcd(x, y, z) = 1 must be of the form

(x, y, z) =
(
±(a2 − 2b2),±2ab,±(a2 + 2b2)

)
.

We have to put a further restriction, namely gcd(a, 2b) = 1. Under this restriction gcd(x, y) = 1 because a common divisor

of x and y must divide 2a2 and 4b2. Finally gcd(x, y) = 1 implies that gcd(x, y, z) = 1 since x2 + 2y2 = z2.



Q.2) Consider the ring I−13 = Z[
√
−13 ].

a) Show that I−13 is not a UFD.

Solution: We have 14 = 2 ·7 = (1 +
√
−13) · (1−

√
−13). The norm of an arbitrary element x+y

√
−13 in this ring is given

by x2 + 13y2. This quantity is a positive integer and it is not equal to 2 or 7. It follows that the elements 2, 7, 1 +
√
−13

and 1−
√
−13 are irreducible. Moreover N(2) = 4 6= 14 = N(1±

√
−13). The irreducible elements 2 and 1 +

√
−13 are not

associates of each other. Similarly 2 and 1−
√
−13 are not associates, either. We conclude that I−13 is not a UFD.

b) Let a = (5, 15 +
√
−13). What is N(a)? Is a principal?

Solution: Note that N(5) = 25 and N(15 +
√
−13) = 2 · 7 · 17 are relatively prime to each other. The ideal (5) remains

prime in I−13. On the other hand (15 +
√
−13) = p2p7p17 where p2, p7 and p17 are prime ideals of indicated norms. We

conclude that
a = (5) + (15 +

√
−13) = gcd((5), (15 +

√
−13)) = (1).

Thus a = (1). We have N(a) = 1 and the ideal a is principal.

Alternative Solution: Note that −13 = (15 +
√
−13− 3 · 5)2 ∈ a. Moreover gcd(−13, 5) = 1 ∈ a. We have N(a) = 1 and

the ideal a is principal.

c) Let b = (7, 15 +
√
−13). What is N(b)? Is b principal?

Solution: Recall from the previous part that (15 +
√
−13) = p2p7p17. We have (7) = p7p

′
7 and

a = (7) + (15 +
√
−13) = gcd((7), (15 +

√
−13)) = p7

where p7 is an ideal of norm 7. It is either (7, 1 +
√
−13), or (7, 1−

√
−13). We easily see that b = (7, 1 +

√
−13). We have

N(b) = 7. The ideal b is not principal because there is no element in the ring I−13 of norm 7.

Alternative Solution: We have (7) = p7p
′
7 where p7 = (7, 1 +

√
−13) and p′7 = (7, 1 −

√
−13). Note that b = p7. We

have N(b) = 7. The ideal b is not principal because there is no element in the ring I−13 of norm 7.

d) Let c = (17, 15 +
√
−13). What is N(c)? Is c principal?

Solution: Recall from the previous part that (15 +
√
−13) = p2p7p17. We have (17) = p17p

′
17 and

a = (17) + (15 +
√
−13) = gcd((17), (15 +

√
−13)) = p17

where p17 is an ideal of norm 17. It is either (17, 2 +
√
−13), or (17, 2−

√
−13). We easily see that c = (17, 2−

√
−13). We

have N(c) = 17. The ideal c is principal because c = (2−
√
−13).

Alternative Solution: We have c = (17, 15 +
√
−13, 2−

√
−13) = (17, 2−

√
−13) = (2−

√
−13). Thus c is principal and

its norm is given by N(c) = |N(2−
√
−13)| = 17.



Q.3) Consider the ring I−10 = Z[
√
−10 ].

a) Show that Cl(−10) ∼= Z/2Z (Minkowski’s constant is slightly bigger than 4.).

Solution: We have Cl(−10) = {[a] : N(a) ≤ 4}. Note that (2) = (2,
√
−10)2 = p22 and (3) remain inert. Thus Cl(−10) =

{[(1)], [p2]}. There is no element of norm 2 in the ring I−10. Thus p2 is not principal. We conclude that Cl(−10) ∼= Z/2Z.

b) Find the number of solutions to the Diophantine equation x2 + 10y2 = 2366.

Solution: There is only one ideal a ⊆ I−10 with N(a) = 2366. Namely, a = p3662 . This ideal is principal since the exponent

of p2 is even. More precisely, we have a = (±2183). The equation x2 + 10y2 = 2366 has only two solutions, namely (2183, 0)

and (−2183, 0).

c) Find the number of solutions to the Diophantine equation x2 + 10y2 = 72017.

Solution: The prime 7 splits in I−10, i.e. (7) = p7p
′
7 where p7 = (7, 2 +

√
−10) and p′7 = (7, 2 −

√
−10). There is no

element of norm 7 in the ring I−10. Thus the ideals p7 and p′7 are not principal. An ideal a ⊆ I−10 of norm 72017 must be

of the form a = (p7)
2017−i

(p′7)
i

where i ∈ {0, 1, 2, . . . , 2017}. We have

[a] =
[
(p7)

2017−i
] [

(p′7)
i
]

= [p7] 6= [(1)].

Here, the second equality is obtained from the facts that

• one and only one of 2017− i and i is odd,

• the ideal class group has order 2, and

• [p7] = [p′7].

We conclude that a is never principal and there is no element of order 72017 in I−10. In other words, the Diophantine

equation x2 + 10y2 = 72017 has no solution.

d) Find the number of solutions to the Diophantine equation x2 + 10y2 = 131000.

Solution: This part is similar to the first part except the exponent of the prime. The prime 13 splits in I−10 into a product
of non-principal ideals. More precisely, (13) = p13p

′
13 where p13 = (13, 4 +

√
−10) and p′13 = (13, 4 −

√
−10). An ideal

a ⊆ I−10 of norm 131000 must be of the form a = (p13)
1000−i

(p′13)
i

where i ∈ {0, 1, 2, . . . , 1000}. We have

[a] =
[
(p13)

1000−i
] [

(p′13)
i
]

= [(1)].

Here, the second equality is obtained from the facts that

• the exponents 1000− i and i are both odd or both even,

• the ideal class group has order 2, and

• [p13] = [p′13].

We conclude that an ideal a ⊆ I−10 of norm 131000 is always principal. It follows that the Diophantine equation x2 +10y2 =

131000 has 2 solutions for each choice of i. Thus there are 2002 solutions.



Q.4) Consider the ring I5 = Z[w5] where w5 =

√
5 + 1

2
.

a) Show that I5 is a PID.

Solution: The Minkowski constant is M5 =
√

5/2 < 2. We find that Cl(5) = {[(1)]}. Thus I5 is a PID.

b) Show that the Diophantine equation x2 + yx− y2 = 1 has infinitely many solutions.

Solution: We know that the Pell’s equation a2 − 5b2 = 1 has infinitely many solutions. For each solution of this equation,

there exists a unit u = a + b
√

5 ∈ I5. This unit u can also be expressed as u = (a− b) + 2bw5. Set x = a− b and y = 2b.

Observe that 1 = N(u) = N(x + yw5) = x2 + yx − y2. Under the correspondence x = a − b and y = 2b, each solution of

the Pell’s equation gives a different solution of x2 + yx− y2 = 1. Even though this correspondence is not one-to-one, this

is not a problem since we do not attempt to find all solutions of x2 + yx− y2 = 1.

c) Show that the Diophantine equation x2 + yx− y2 = 2017 has no solution.

Solution: We use the quadratic reciprocity law to see that(
5

2017

)
=

(
2017

5

)
=

(
2

5

)
= −1.

It follows that 2017 remains prime in I5 and as a result there is no ideal in I5 of norm 2017. We conclude that there is no

element in I5 of norm 2017 and that the Diophantine equation x2 + yx− y2 = 2017 has no solution.

d) Show that the Diophantine equation x2 +yx−y2 = 19 has infinitely many solutions.

Solution: One can easily see that (x, y) = (4, 1) is a solution. Set α = 4 + w5. The element ε = 9 + 4
√

5 ∈ I5 is a
unit whose powers are distinct elements producing distinct solutions of the Pell’s equation x2 − 5y2 = 1. As a result, the
elements αεn are all distinct for n = 1, 2, 3, . . . and moreover N(αεn) = N(α)N(ε)n = 19 · 1n = 19. We can express each
such element using the basis {1, w5}. More precisely,

αεn = xn + ynw5

for some integers xn and yn. Recall that N(xn + ynw5) = x2n + ynxn − y2n. We conclude that there are infinitely many

solutions of the Diophantine equation x2 + yx− y2 = 19.


