Name and Surname: Student Number:

Math 366 - Spring 2015 - METU

Quiz 6

Question: Consider the ideals $\mathfrak{a} = (2, \sqrt{10})$ and $\mathfrak{b} = (3, 1 + \sqrt{10})$ in I_{10} .

1. Is it true that $\mathfrak{a}^2 = (2)$? Prove or disprove.

Solution: Yes. We have

$$\mathfrak{a}^2 = (4, 2\sqrt{10}, 10)$$

= (4, 2\sqrt{10}, 10, 2)
= (2).

2. Is it true that $\mathfrak{b}^2 = (3)$? Prove or disprove.

Solution: No. We have

$$b^{2} = (9, 3(1 + \sqrt{10}), 11 + 2\sqrt{10})$$

= (9, 3(1 + \sqrt{10}), 11 + 2\sqrt{10}, 2 + 2\sqrt{10})
= (9, 3(1 + \sqrt{10}), 11 + 2\sqrt{10}, 2 + 2\sqrt{10}, 1 + \sqrt{10})
= (1 + \sqrt{10}).

The elements 3 and $1 + \sqrt{10}$ may differ by a unit. However this is not the case since $(1 + \sqrt{10})/3$ is not algebraic integer.

3. Is **ab** principal or not?

Solution: Yes it is principal. We have

$$\mathfrak{ab} = (6, 2(1 + \sqrt{10}), 3\sqrt{10}, 10 + \sqrt{10})$$
$$= (6, 2 + 2\sqrt{10}, 3\sqrt{10}, 10 + \sqrt{10}, -2 + \sqrt{10}).$$

Note that

$$6 = (-2 + \sqrt{10})(2 + \sqrt{10}),$$

$$2 + 2\sqrt{10} = (-2 + \sqrt{10})(4 + \sqrt{10}),$$

$$3\sqrt{10} = (-2 + \sqrt{10})(5 + \sqrt{10}),$$

$$10 + \sqrt{10} = (-2 + \sqrt{10})(5 + 2\sqrt{10}).$$

It follows that $\mathfrak{ab} = (-2 + \sqrt{10}).$

Alternative solution: Consider the elements $\gamma = -2 + \sqrt{10}$ and $\gamma' = -2 - \sqrt{10}$ which are of norm -6. Consider the ideals $\mathbf{c} = (\gamma)$ and $\mathbf{c}' = (\gamma')$ which are generated by γ and γ' , respectively. The norm of the ideal \mathbf{c} is 6. The same is true for \mathbf{c}' . Thus each ideal \mathbf{c} or $\mathbf{c'}$ must be a product of two prime ideals of norm 2 and 3. By the prime ideal decomposition theorem we know that there is only one prime ideal of norm 2 in I_{10} , namely $\mathbf{a} = (2, \sqrt{10})$. Moreover there are two prime ideals of norm 3 in I_{10} , namely $\mathbf{b} = (3, 1 + \sqrt{10})$ and $\mathbf{b'} = (3, 1 - \sqrt{10})$. Now we must have $\mathbf{ab} = \mathbf{c}$ or $\mathbf{c'}$ by the unique ideal prime decomposition. In either case \mathbf{ab} is principal.

In order to decide if $\mathfrak{ab} = \mathfrak{c}$ or \mathfrak{c}' , we can consider the following idea. Note that

$$\sqrt{-10} \equiv 2 \pmod{\mathfrak{c}}.$$

If $\mathbf{c} = \mathfrak{a}\mathbf{b}$ or $\mathbf{c} = \mathfrak{a}\mathbf{b}'$, we must have $\sqrt{-10} \equiv 2 \pmod{\mathfrak{b}}$ or $\sqrt{-10} \equiv 2 \pmod{\mathfrak{b}'}$, respectively. Note that the first congruence is true, whereas the second one is wrong. Thus we conclude that $\mathfrak{a}\mathfrak{b} = \mathfrak{c} = (-2 + \sqrt{10})$.