Name and Surname:
Student Number:

Math 366 - Spring 2015 - METU

Quiz 6

Question: Consider the ideals $\mathfrak{a}=(2, \sqrt{10})$ and $\mathfrak{b}=(3,1+\sqrt{10})$ in I_{10}.

1. Is it true that $\mathfrak{a}^{2}=(2)$? Prove or disprove.

Solution: Yes. We have

$$
\begin{aligned}
\mathfrak{a}^{2} & =(4,2 \sqrt{10}, 10) \\
& =(4,2 \sqrt{10}, 10,2) \\
& =(2) .
\end{aligned}
$$

2. Is it true that $\mathfrak{b}^{2}=(3)$? Prove or disprove.

Solution: No. We have

$$
\begin{aligned}
\mathfrak{b}^{2} & =(9,3(1+\sqrt{10}), 11+2 \sqrt{10}) \\
& =(9,3(1+\sqrt{10}), 11+2 \sqrt{10}, 2+2 \sqrt{10}) \\
& =(9,3(1+\sqrt{10}), 11+2 \sqrt{10}, 2+2 \sqrt{10}, 1+\sqrt{10}) \\
& =(1+\sqrt{10}) .
\end{aligned}
$$

The elements 3 and $1+\sqrt{10}$ may differ by a unit. However this is not the case since $(1+\sqrt{10}) / 3$ is not algebraic integer.
3. Is $\mathfrak{a b}$ principal or not?

Solution: Yes it is principal. We have

$$
\begin{aligned}
\mathfrak{a b} & =(6,2(1+\sqrt{10}), 3 \sqrt{10}, 10+\sqrt{10}) \\
& =(6,2+2 \sqrt{10}, 3 \sqrt{10}, 10+\sqrt{10},-2+\sqrt{10}) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
6 & =(-2+\sqrt{10})(2+\sqrt{10}), \\
2+2 \sqrt{10} & =(-2+\sqrt{10})(4+\sqrt{10}), \\
3 \sqrt{10} & =(-2+\sqrt{10})(5+\sqrt{10}) \\
10+\sqrt{10} & =(-2+\sqrt{10})(5+2 \sqrt{10}) .
\end{aligned}
$$

It follows that $\mathfrak{a b}=(-2+\sqrt{10})$.
Alternative solution: Consider the elements $\gamma=-2+\sqrt{10}$ and $\gamma^{\prime}=-2-\sqrt{10}$ which are of norm -6 . Consider the ideals $\mathfrak{c}=(\gamma)$ and $\mathfrak{c}^{\prime}=\left(\gamma^{\prime}\right)$ which are generated by γ and γ^{\prime}, respectively. The norm of the ideal \mathfrak{c} is 6 . The same is true for \mathfrak{c}^{\prime}.

Thus each ideal \mathfrak{c} or \mathfrak{c}^{\prime} must be a product of two prime ideals of norm 2 and 3. By the prime ideal decomposition theorem we know that there is only one prime ideal of norm 2 in I_{10}, namely $\mathfrak{a}=(2, \sqrt{10})$. Moreover there are two prime ideals of norm 3 in I_{10}, namely $\mathfrak{b}=(3,1+\sqrt{10})$ and $\mathfrak{b}^{\prime}=(3,1-\sqrt{10})$. Now we must have $\mathfrak{a b}=\mathfrak{c}$ or \mathfrak{c}^{\prime} by the unique ideal prime decomposition. In either case $\mathfrak{a b}$ is principal.
In order to decide if $\mathfrak{a b}=\mathfrak{c}$ or \mathfrak{c}^{\prime}, we can consider the following idea. Note that

$$
\sqrt{-10} \equiv 2 \quad(\bmod \mathfrak{c}) .
$$

If $\mathfrak{c}=\mathfrak{a b}$ or $\mathfrak{c}=\mathfrak{a} \mathfrak{b}^{\prime}$, we must have $\sqrt{-10} \equiv 2(\bmod \mathfrak{b})$ or $\sqrt{-10} \equiv 2\left(\bmod \mathfrak{b}^{\prime}\right)$, respectively. Note that the first congruence is true, whereas the second one is wrong. Thus we conclude that $\mathfrak{a b}=\mathfrak{c}=(-2+\sqrt{10})$.

