Name and Surname: Student Number:

Math 366 - Spring 2015 - METU

Quiz 5

Question 1: Consider the ideals $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} in the ring $I_{-17} = \mathbb{Z}[\sqrt{-17}]$.

$$a = (2, 1 + \sqrt{-17}),$$

 $b = (3, 1 + \sqrt{-17}),$
 $c = (3, 1 - \sqrt{-17})$

For each of the following pairs of claims, choose one and justify. Clearly indicate the one you have chosen.

(i) $\mathfrak{a} = (2, 1 - \sqrt{-17})$ or $\mathfrak{b} \neq \mathfrak{c}$.

Solution: For the first claim, we have

$$\mathfrak{a} = (2, 1 + \sqrt{-17}, 1 - \sqrt{-17})$$
$$= (2, 1 - \sqrt{-17}).$$

For the second claim, note that $1 \in \mathfrak{b} + \mathfrak{c}$. Assume that $1 \in \mathfrak{b}$. Then $1 \in \mathfrak{c}$ by the symmetry. It follows that $1 \in \mathfrak{bc} = (3)$, a contradiction. Thus $\mathfrak{b} \neq (1)$ and there are elements in \mathfrak{c} which are not contained in \mathfrak{b} . We conclude that $\mathfrak{b} \neq \mathfrak{c}$.

(ii) $\mathfrak{a} + \mathfrak{a} = \mathfrak{a}$ or $\mathfrak{a} + \mathfrak{b} = (1)$.

Solution: For the first claim, we have $\mathfrak{a} + \mathfrak{a} = \{\alpha + \beta : \alpha, \beta \in \mathfrak{a}\} \subseteq \mathfrak{a}$. On the other hand $\mathfrak{a} = \{\alpha : \alpha \in \mathfrak{a}\} = \{\alpha + 0 : \alpha \in \mathfrak{a}\} \subseteq \mathfrak{a} + \mathfrak{a}$.

To justify the second claim note that $-2 \in \mathfrak{a}$ and $3 \in \mathfrak{b}$. Thus $1 = -2 + 3 \in \mathfrak{a} + \mathfrak{b}$. Therefore $\mathfrak{a} + \mathfrak{b} = (1)$.

(iii)
$$\mathfrak{aa} = (2)$$
 or $\mathfrak{bc} = (3)$.

Solution: To prove the first claim, observe that

$$\mathfrak{aa} = (4, 2(1 + \sqrt{-17}), (1 + \sqrt{-17})^2)$$

= (4, 2 + 2\sqrt{-17}, -16 + 2\sqrt{-17}, 2\sqrt{-17})
= (4, 2 + 2\sqrt{-17}, -16 + 2\sqrt{-17}, 2\sqrt{-17}, 2)
= (2).

For the second claim note that

$$bc = (9, 3(1 + \sqrt{-17}), 3(1 - \sqrt{17}), 18)$$

= (9, 3(1 + \sqrt{-17}), 3(1 - \sqrt{17}), 18, 6)
= (9, 3(1 + \sqrt{-17}), 3(1 - \sqrt{17}), 18, 6, 3)
= (3).

(iv) $\mathfrak{ab} \neq (1 + \sqrt{-17})$ or $\mathfrak{abb} = (1 + \sqrt{-17})$.

Solution: Consider $\mathfrak{ab} = (6, 2(1+\sqrt{-17}), 3(1+\sqrt{-17}), (1+\sqrt{-17})^2)$. We see that $1 + \sqrt{-17} \in \mathfrak{ab}$ and therefore $\mathfrak{ab} = (6, 1 + \sqrt{-17})$. Assume that $\mathfrak{ab} = (1 + \sqrt{-17})$. Then there exists $\alpha = x + \sqrt{-17} \in I_{-17}$ such that $6 = \alpha(1 + \sqrt{-17})$. Taking the norms we find that $36 = N(\alpha) \cdot 18$. It follows that $N(\alpha) = x^2 + 17y^2 = 2$ which is a contradiction.

To justify the second claim, note that

$$\begin{aligned} \mathfrak{abb} &= (6, 1 + \sqrt{-17})(3, 1 + \sqrt{-17}) \\ &= (18, 6(1 + \sqrt{-17}), 3(1 + \sqrt{-17}) + (1 + \sqrt{-17})^2) \\ &= (18, 3(1 + \sqrt{-17}), -16 + 2\sqrt{-17}) \\ &= (18, 3(1 + \sqrt{-17}), -16 + 2\sqrt{-17}, 2 + 2\sqrt{-17}) \\ &= (18, 3(1 + \sqrt{-17}), -16 + 2\sqrt{-17}, 2 + 2\sqrt{-17}, 1 + \sqrt{-17}) \\ &= (1 + \sqrt{-17}). \end{aligned}$$