Name and Surname:
Student Number:

Math 366 - Spring 2015 - METU

Quiz 5

Question 1: Consider the ideals $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{c} in the ring $I_{-17}=\mathbb{Z}[\sqrt{-17}]$.

$$
\begin{aligned}
& \mathfrak{a}=(2,1+\sqrt{-17}), \\
& \mathfrak{b}=(3,1+\sqrt{-17}), \\
& \mathfrak{c}=(3,1-\sqrt{-17})
\end{aligned}
$$

For each of the following pairs of claims, choose one and justify. Clearly indicate the one you have chosen.
(i) $\mathfrak{a}=(2,1-\sqrt{-17})$ or $\mathfrak{b} \neq \mathfrak{c}$.

Solution: For the first claim, we have

$$
\begin{aligned}
\mathfrak{a} & =(2,1+\sqrt{-17}, 1-\sqrt{-17}) \\
& =(2,1-\sqrt{-17}) .
\end{aligned}
$$

For the second claim, note that $1 \in \mathfrak{b}+\mathfrak{c}$. Assume that $1 \in \mathfrak{b}$. Then $1 \in \mathfrak{c}$ by the symmetry. It follows that $1 \in \mathfrak{b c}=(3)$, a contradiction. Thus $\mathfrak{b} \neq(1)$ and there are elements in \mathfrak{c} which are not contained in \mathfrak{b}. We conclude that $\mathfrak{b} \neq \mathfrak{c}$.
(ii) $\mathfrak{a}+\mathfrak{a}=\mathfrak{a}$ or $\mathfrak{a}+\mathfrak{b}=(1)$.

Solution: For the first claim, we have $\mathfrak{a}+\mathfrak{a}=\{\alpha+\beta: \alpha, \beta \in \mathfrak{a}\} \subseteq \mathfrak{a}$. On the other hand $\mathfrak{a}=\{\alpha: \alpha \in \mathfrak{a}\}=\{\alpha+0: \alpha \in \mathfrak{a}\} \subseteq \mathfrak{a}+\mathfrak{a}$.
To justify the second claim note that $-2 \in \mathfrak{a}$ and $3 \in \mathfrak{b}$. Thus $1=-2+3 \in \mathfrak{a}+\mathfrak{b}$. Therefore $\mathfrak{a}+\mathfrak{b}=(1)$.
(iii) $\mathfrak{a d}=(2)$ or $\mathfrak{b c}=(3)$.

Solution: To prove the first claim, observe that

$$
\begin{aligned}
\mathfrak{a} \mathfrak{a} & =\left(4,2(1+\sqrt{-17}),(1+\sqrt{-17})^{2}\right) \\
& =(4,2+2 \sqrt{-17},-16+2 \sqrt{-17}, 2 \sqrt{-17}) \\
& =(4,2+2 \sqrt{-17},-16+2 \sqrt{-17}, 2 \sqrt{-17}, 2) \\
& =(2) .
\end{aligned}
$$

For the second claim note that

$$
\begin{aligned}
\mathfrak{b c} & =(9,3(1+\sqrt{-17}), 3(1-\sqrt{17}), 18) \\
& =(9,3(1+\sqrt{-17}), 3(1-\sqrt{17}), 18,6) \\
& =(9,3(1+\sqrt{-17}), 3(1-\sqrt{17}), 18,6,3) \\
& =(3) .
\end{aligned}
$$

(iv) $\mathfrak{a b} \neq(1+\sqrt{-17})$ or $\mathfrak{a b b}=(1+\sqrt{-17})$.

Solution: Consider $\mathfrak{a b}=\left(6,2(1+\sqrt{-17}), 3(1+\sqrt{-17}),(1+\sqrt{-17})^{2}\right)$. We see that $1+\sqrt{-17} \in \mathfrak{a b}$ and therefore $\mathfrak{a b}=(6,1+\sqrt{-17})$. Assume that $\mathfrak{a b}=(1+\sqrt{-17})$. Then there exists $\alpha=x+\sqrt{-17} \in I_{-17}$ such that $6=\alpha(1+\sqrt{-17})$. Taking the norms we find that $36=N(\alpha) \cdot 18$. It follows that $N(\alpha)=x^{2}+17 y^{2}=2$ which is a contradiction.

To justify the second claim, note that

$$
\begin{aligned}
\mathfrak{a b b} & =(6,1+\sqrt{-17})(3,1+\sqrt{-17}) \\
& =\left(18,6(1+\sqrt{-17}), 3(1+\sqrt{-17})+(1+\sqrt{-17})^{2}\right) \\
& =(18,3(1+\sqrt{-17}),-16+2 \sqrt{-17}) \\
& =(18,3(1+\sqrt{-17}),-16+2 \sqrt{-17}, 2+2 \sqrt{-17}) \\
& =(18,3(1+\sqrt{-17}),-16+2 \sqrt{-17}, 2+2 \sqrt{-17}, 1+\sqrt{-17}) \\
& =(1+\sqrt{-17}) .
\end{aligned}
$$

