Name and Surname: Student Number:

Math 366 - Spring 2015 - METU

Quiz 3

Question 1: Let α and β be Gaussian integers. Prove or disprove each of the following statements:

• If $gcd(\alpha, \beta) = 1$, then $gcd(N(\alpha), N(\beta)) = 1$.

Solution: Consider $\alpha = 2 + i$ and $\beta = 2 - i$. These are distinct Gaussian primes so we have $gcd(\alpha, \beta) = 1$. However $gcd(N(\alpha), N(\beta)) = 1$ does not hold.

• If $gcd(N(\alpha), N(\beta)) = 1$, then $gcd(\alpha, \beta) = 1$.

Solution: We prove the statement by its contrapositive. Suppose that $gcd(\alpha, \beta) \neq 1$. 1. Then there exist a Gaussian integer γ such that γ divides both α and β and $N(\gamma) > 1$. It follows that $N(\gamma)$ divides $N(\alpha)$ and $N(\beta)$. We conclude that $gcd(N(\alpha), N(\beta)) \neq 1$.