Name and Surname:
Student Number:

Math 366 - Spring 2015 - METU

Quiz 2

Question 1: Fill in the following blanks:
Theorem (Nagell-Lutz): Let $E: y^{2}=x^{3}+a x+b$ be an elliptic curve with $a, b \in \mathbb{Z}$. Let $P\left(x_{0}, y_{0}\right) \in E$ be a rational point of finite order . Then x_{0} and y_{0} are integers; and either $\quad y=0$ or else $\quad y$ divides $D=-4 a^{3}-27 b^{2}$.

Question 2: Let $E: y^{2}=x^{3}+8$. Consider $P=(-2,0), Q=(1,3), R=(2,4)$ and $S=(46,312)$ which are points on E. For each of these points, determine if it has finite order or not.

Solution: The point $P=(-2,0)$ is a torsion point of order two since there is a vertical tangent at that point. The point $S=(46,312)$ is not a torsion point by NagellLutz theorem since 312 does not divide $D=-27 \cdot 8^{2}$. The remaining two points, namely Q and R, have integer y coordinates dividing D. This agrees with the conclusion of Nagell-Lutz theorem but we can't make any conclusions yet! Note that

$$
Q+Q=(-7 / 4,-13 / 8) \quad \text { and } \quad R+R=(-7 / 4,13 / 8)
$$

Now it follows by Nagell-Lutz theorem that $2 Q$ and $2 R$ are points of infinite order because their coordinates are not integers. As a result Q and R have infinite order as well.

