METU, Spring 2015, Math 366.
 Exercise Set 9

1. Let \mathfrak{p} be a proper ideal of a commutative ring R with identity 1_{R}. Show that the following are equivalent:

- For all elements $a, b \in R, a b \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
- For all ideals $\mathfrak{a}, \mathfrak{b}$ in $R, \mathfrak{a} \mathfrak{b} \subseteq \mathfrak{p}$ implies $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.

2. Find the ideal prime decomposition of (30) in I_{-29}.
3. Consider the ideals $\mathfrak{a}=(2, \sqrt{10})$ and $\mathfrak{b}=(3,1+\sqrt{10})$ in I_{10}. Determine if \mathfrak{a} and \mathfrak{b} are principal or not.
4. Let \mathfrak{a} and \mathfrak{b} be nonzero ideals of I_{d}. Show that $\mathfrak{a}+\mathfrak{b}=\operatorname{gcd}(\mathfrak{a}, \mathfrak{b})$ and $\mathfrak{a} \cap \mathfrak{b}=\operatorname{lcm}(\mathfrak{a}, \mathfrak{b})$.
5. Consider the ideals $\mathfrak{a}=(2+\sqrt{-5})$ and $\mathfrak{b}=(3)$ in I_{-5}. Show that $\mathfrak{a}+\mathfrak{b}=(3,1-\sqrt{5})$ and $\mathfrak{a} \cap \mathfrak{b}=(9,3-3 \sqrt{-5})$.
6. For each of the following rings, find all ideals containing the element 30 in that ring.
(a) \mathbb{Z}.
(b) I_{-1}.
(c) I_{-5}.
7. For each of the following rings, find all ideals of norm 18 in that ring.
(a) I_{-1},
(b) I_{-3}
(c) I_{3}.
8. Suppose that $\mathfrak{a}=(3,1+\sqrt{-23})$ in I_{-23}. Show that $\mathfrak{a} \neq(1)$. Show that $N(\mathfrak{a})=3$. Is \mathfrak{a} principal? What about \mathfrak{a}^{2} and \mathfrak{a}^{3}.
