METU, Spring 2015, Math 366. Exercise Set 9

- 1. Let \mathfrak{p} be a proper ideal of a commutative ring R with identity 1_R . Show that the following are equivalent:
 - For all elements $a, b \in R$, $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
 - For all ideals $\mathfrak{a}, \mathfrak{b}$ in $R, \mathfrak{ab} \subseteq \mathfrak{p}$ implies $\mathfrak{a} \subseteq \mathfrak{p}$ or $\mathfrak{b} \subseteq \mathfrak{p}$.
- 2. Find the ideal prime decomposition of (30) in I_{-29} .
- 3. Consider the ideals $\mathfrak{a} = (2, \sqrt{10})$ and $\mathfrak{b} = (3, 1 + \sqrt{10})$ in I_{10} . Determine if \mathfrak{a} and \mathfrak{b} are principal or not.
- 4. Let \mathfrak{a} and \mathfrak{b} be nonzero ideals of I_d . Show that $\mathfrak{a} + \mathfrak{b} = \gcd(\mathfrak{a}, \mathfrak{b})$ and $\mathfrak{a} \cap \mathfrak{b} = \operatorname{lcm}(\mathfrak{a}, \mathfrak{b})$.
- 5. Consider the ideals $\mathfrak{a} = (2 + \sqrt{-5})$ and $\mathfrak{b} = (3)$ in I_{-5} . Show that $\mathfrak{a} + \mathfrak{b} = (3, 1 \sqrt{5})$ and $\mathfrak{a} \cap \mathfrak{b} = (9, 3 3\sqrt{-5})$.
- 6. For each of the following rings, find all ideals containing the element 30 in that ring.
 - (a) Z.
 - (b) I_{-1} .
 - (c) I_{-5} .
- 7. For each of the following rings, find all ideals of norm 18 in that ring.
 - (a) I_{-1} ,
 - (b) I_{-3}
 - (c) I_3 .
- 8. Suppose that $\mathfrak{a} = (3, 1 + \sqrt{-23})$ in I_{-23} . Show that $\mathfrak{a} \neq (1)$. Show that $N(\mathfrak{a}) = 3$. Is \mathfrak{a} principal? What about \mathfrak{a}^2 and \mathfrak{a}^3 .