METU, Spring 2015, Math 366.
 Exercise Set 8

1. Let d be a squarefree negative integer. Show that the group of units U of the ring of integers I_{d} is as follows:

- For $d=-1, U=\{ \pm 1, \pm i\}$ where $i=\sqrt{-1}$,
- For $d=-3, U=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$ where $\omega=(\sqrt{-3}+1) / 2$,
- For all other $d<0, U=\{ \pm 1\}$.

2. Let R be an integral domain and x, y are non-zero elements of R. Show that the following are equivalent:
(a) x and y are associates, (An element y is called an associate of x if $x=u y$ for a unit u in R.)
(b) $x \mid y$ and $y \mid x$, (We write $x \mid y$ if there exists $z \in R$ such that $y=x z$.)
(c) $(x)=(y)$.
3. Prove that a prime element in an integral domain is irreducible. Show that the converse is not true in general.
4. Show that $\sqrt{-5}$ is a prime element in I_{-5}. Is $1+\sqrt{-5}$ a prime element? What about $3+2 \sqrt{-5}$?
5. Show that I_{d} is not a UFD for $-d \in\{5,6,10,13,14,15,17,21,22,23,26,29,30\}$.
6. Is $10=(3+i)(3-i)=2 \cdot 5$ an example of non-unique factorization in $\mathbf{Z}[i]$.
7. Show that 6 and $2(1+\sqrt{-5})$ do not have a greatest common factor in I_{-5}. Do they have a least common multiple?
8. If R is a Euclidean domain than the greatest common factor exist for each pair of nonzero elements α and β. Moreover $\operatorname{gcd}(\alpha, \beta)$ can be found by the Euclidean algorithm.
(a) Show that $(\alpha, \beta)=(\operatorname{gcd}(\alpha, \beta))$.
(b) Find a generator for the ideal $\left(x^{4}-1, x^{3}-x\right)$ in $\mathbf{Q}[x]$.
