METU, Spring 2015, Math 366. Exercise Set 8

- 1. Let d be a squarefree negative integer. Show that the group of units U of the ring of integers I_d is as follows:
 - For d = -1, $U = \{\pm 1, \pm i\}$ where $i = \sqrt{-1}$,
 - For d = -3, $U = \{\pm 1, \pm \omega, \pm \omega^2\}$ where $\omega = (\sqrt{-3} + 1)/2$,
 - For all other $d < 0, U = \{\pm 1\}.$
- 2. Let R be an integral domain and x, y are non-zero elements of R. Show that the following are equivalent:
 - (a) x and y are associates, (An element y is called an associate of x if x = uy for a unit u in R.)
 - (b) x|y and y|x, (We write x|y if there exists $z \in R$ such that y = xz.)
 - (c) (x) = (y).
- 3. Prove that a prime element in an integral domain is irreducible. Show that the converse is not true in general.
- 4. Show that $\sqrt{-5}$ is a prime element in I_{-5} . Is $1 + \sqrt{-5}$ a prime element? What about $3 + 2\sqrt{-5}$?
- 5. Show that I_d is not a UFD for $-d \in \{5, 6, 10, 13, 14, 15, 17, 21, 22, 23, 26, 29, 30\}$.
- 6. Is $10 = (3+i)(3-i) = 2 \cdot 5$ an example of non-unique factorization in $\mathbf{Z}[i]$.
- 7. Show that 6 and $2(1 + \sqrt{-5})$ do not have a greatest common factor in I_{-5} . Do they have a least common multiple?
- 8. If R is a Euclidean domain than the greatest common factor exist for each pair of nonzero elements α and β . Moreover $gcd(\alpha, \beta)$ can be found by the Euclidean algorithm.
 - (a) Show that $(\alpha, \beta) = (\gcd(\alpha, \beta))$.
 - (b) Find a generator for the ideal $(x^4 1, x^3 x)$ in $\mathbf{Q}[x]$.