METU, Spring 2015, Math 366.
 Exercise Set 7

1. Consider $\mathbb{Q}(\sqrt{5})$. Let $\alpha=7-3 \sqrt{5}$ and $\beta=1+2 \sqrt{5}$. Show that $\{\alpha, \beta\}$ is a linearly independent set over the field \mathbb{Q}. Express $\gamma=2015+366 \sqrt{5}$ as a linear combination of α and β.
2. A complex number is called an algebraic integer if it is a root of a monic irreducible polynomial with coefficients from \mathbb{Z}. For each of the following, determine if it is an algebraic integer or not.

- $366 \sqrt{5}+2015$,
- $(\sqrt{7}+1) / 2$,
- $\left(\sqrt[3]{19^{2}}+\sqrt[3]{19}+1\right) / 3$,
- $(\sqrt{2}+\sqrt{-1}) / 2$,
- $(2 \sqrt{-27}+3) / 6$

3. Show that I_{d}, the integers of $\mathbb{Q}(\sqrt{d})$, is a subring of complex numbers. Let f be a nonzero integer. Show that

$$
\mathbb{Z}+f I_{d}=\left\{m+f \alpha: m \in \mathbb{Z}, \alpha \in I_{d}\right\} .
$$

is a subring of I_{d}. Show that $\mathbb{Z}+f I_{d}$ is not ideal of I_{d} if $|f| \geq 2$.
4. Determine the set of units in rings I_{3} and I_{-3}.
5. For each of the following rings, show that it is an Euclidean domain by finding an Euclidean function: the integers \mathbb{Z}, the polynomial ring $\mathbb{F}[x]$ where \mathbb{F} is a field, $I_{-1}=$ $\mathbb{Z}[i], I_{-2}=\mathbb{Z}[\sqrt{-2}], I_{-3}=\mathbb{Z}[(\sqrt{-3}+1) / 2]$.
6. Show that every Euclidean domain is a principal ideal domain. Show that every principal ideal domain is a unique factorization domain. Give an example of a unique factorization domain which is not a principal ideal domain. Give an example of a principal ideal domain which is not a Euclidean domain.
7. For each of the following ideals, determine if it is principal or not. If it is principal, find a generator.

- the ideal $(366,2013)$ in \mathbb{Z},
- the ideal $(9+7 i, 4+7 i)$ in $\mathbb{Z}[i]$,
- the ideal $(2,1+\sqrt{-5})$ in $\mathbb{Z}[\sqrt{-5}]$,
- the ideal $(2, x)$ in $\mathbb{Z}[x]$.

8. Show that every maximal ideal is a prime ideal. Give an example of a non-zero prime ideal which is not maximal.
