## METU, Spring 2015, Math 366. <br> Exercise Set 6

1. Let $\alpha, \beta$ be non-zero Gaussian integers. Show that $N(\operatorname{gcd}(\alpha, \beta)) \mid \operatorname{gcd}(N(\alpha), N(\beta))$.
2. Use the arithmetic of the Gaussian integers to determine all solutions to the Diophantine equation $x^{2}+y^{2}=z^{2}$. (Hint: Show that $x+i y=u \alpha^{2}$ for some Gaussian integer $\alpha=m+n i$ and a unit $u$.)
3. Let $N=p_{1} p_{2} \cdots p_{n}$ where $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes of the form $4 k+1$. In how many different ways can you represent $N$ as a sum of two squares? Prove your formula by using the properties of Gaussian integers (Do not use the fact that $r_{2}(n)$ is a multiplicative function).
4. In how many different ways can you represent $3,9,27,81, \ldots$ in the form $x^{2}+2 y^{2}$. Do you see a pattern? Write a formula for the number of representations of $3^{k}$ in the form $x^{2}+2 y^{2}$. Which facts do you need about the ring $\mathbb{Z}[\sqrt{-2}]$ in order to prove this formula.
5. Let $a, b$ and $c$ be integers such that $b^{2}-4 a c=-4$ and let $m$ be fixed positive integer. Show that the Diophantine equation $a x^{2}+b x y+c y^{2}=m$ has a solution if and only if the Diophantine equation $\tilde{x}^{2}+\tilde{y}^{2}=m$ has a solution. (Hint: A number of the form $k^{2}+1$ has no prime divisor congruent 3 modulo 4).
6. Let $d$ be a squarefree integer and let $\alpha=\sqrt{d}+1$ and $\beta=\sqrt{d}-3$. Write $\alpha^{3}, \alpha \beta, \frac{\alpha+1}{\beta}$ and $\frac{\beta}{\alpha-2}$ in the form $r+s \sqrt{d}$ for some rational numbers $r$ and $s$.
7. Let $d_{1}$ and $d_{2}$ be two distinct squarefree integers. Show that $\mathbb{Q}\left(\sqrt{d_{1}}\right) \neq \mathbb{Q}\left(\sqrt{d_{2}}\right)$.
8. Prove the following facts about the conjugation in $\mathbb{Q}(\sqrt{d})$.

- $(\alpha+\beta)^{\prime}=\alpha^{\prime}+\beta^{\prime},(\alpha \beta)^{\prime}=\alpha^{\prime} \beta^{\prime},(\alpha / \beta)^{\prime}=\alpha^{\prime} / \beta^{\prime}$,
- $\alpha=\alpha^{\prime}$ if and only if $\alpha$ is rational.

9. Prove the following facts about the trace and norm maps on $\mathbb{Q}(\sqrt{d})$.

- $\operatorname{Tr}(\alpha+\beta)=\operatorname{Tr}(\alpha)+\operatorname{Tr}(\beta)$,
- $N(\alpha \beta)=N(\alpha) N(\beta)$,
- $N(\alpha)=0$ if and only if $\alpha=0$,
- $\alpha$ is a root of the polynomial equation $x^{2}-\operatorname{Tr}(\alpha)+N(\alpha)=0$.

10. Let $\alpha$ be a root of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree three. Consider

$$
\mathbb{Q}(\alpha)=\left\{a+b \alpha+c \alpha^{2}: a, b, c \in \mathbb{Q}\right\} .
$$

Show that $\mathbb{Q}(\alpha)$ is a field. You may start with showing that $\alpha^{3}$ is an element of $\mathbb{Q}(\alpha)$. What about $\frac{1}{\alpha-1}$ ?

