METU, Spring 2015, Math 366. Exercise Set 5

- 1. Compute the convergents of the simple continued fraction [1; 1, 2, 1, 2, 1, 2, 1, 2] as real numbers. Is there a special real number to which convergents approach?
- 2. Find the first ten terms of the inifinite continued fraction of e. Do you see a pattern?
- 3. For any positive integer n, find the fundamental solution of

(a)
$$x^2 - (n^2 + 1)y^2 = 1$$
, and

(b)
$$x^2 - (n^2 + 2)y^2 = 1.$$

- 4. Find the fundamental solution of the Pell's equation $x^2 41y^2 = 1$.
- 5. Does there exist infinitely many triples satisfying the equation $a^2 + b^2 = c^2$ such that 0 < a < b < c and c b = 1? Same question with b a = 1?
- 6. If d is divisible by a prime $p \equiv 3 \pmod{4}$, show that the negative Pell's equation $x^2 dy^2 = -1$ has no solution.
- 7. Give an infinite set of solutions of the Diophantine equation $x^2 6y^2 = 19$.
- 8. Show that the Gaussian integers $\mathbb{Z}[i]$ is a ring.
- 9. Show that $\alpha = 5 + 2i$ does not divide $\beta = 7 + 3i$. Using the Euclidean algorithm express $gcd(\alpha, \beta) = \alpha\lambda + \beta\eta$ for some Gaussian integers λ and η .
- 10. Let α and β be Gaussian integers not both 0. Show that any two greatest common divisors of α and β are associates of one another.
- 11. Let $R = \mathbb{Z}[\sqrt{-2}]$. Let α, β be elements of R with $\beta \neq 0$. Show that there exist γ and δ such that $\alpha = \beta\gamma + \delta$ with $N(\delta) < N(\beta)$. Apply the algorithm to the specific case $\alpha = 5 + 2\sqrt{-2}$ and $\beta = 3 \sqrt{-2}$
- 12. Try to prove the division algorithm for $R = \mathbb{Z}[\sqrt{-5}]$. What goes wrong? (Hint: Try to divide $\alpha = 1 + \sqrt{-5}$ by $\beta = 2$.)
- 13. Classify all prime elements of the ring $R = \mathbb{Z}[\sqrt{-2}]$. Is there an element $\alpha \in R$ of norm 366 or 2015?
- 14. Solve the equation 2x + (2+i)y = 11 3i in the Gaussian integers $x, y \in \mathbb{Z}[i]$.