METU, Spring 2015, Math 366.
 Exercise Set 5

1. Compute the convergents of the simple continued fraction $[1 ; 1,2,1,2,1,2,1,2]$ as real numbers. Is there a special real number to which convergents approach?
2. Find the first ten terms of the inifinite continued fraction of e. Do you see a pattern?
3. For any positive integer n, find the fundamental solution of
(a) $x^{2}-\left(n^{2}+1\right) y^{2}=1$, and
(b) $x^{2}-\left(n^{2}+2\right) y^{2}=1$.
4. Find the fundamental solution of the Pell's equation $x^{2}-41 y^{2}=1$.
5. Does there exist infinitely many triples satisfying the equation $a^{2}+b^{2}=c^{2}$ such that $0<a<b<c$ and $c-b=1$? Same question with $b-a=1$?
6. If d is divisible by a prime $p \equiv 3(\bmod 4)$, show that the negative Pell's equation $x^{2}-d y^{2}=-1$ has no solution.
7. Give an infinite set of solutions of the Diophantine equation $x^{2}-6 y^{2}=19$.
8. Show that the Gaussian integers $\mathbb{Z}[i]$ is a ring.
9. Show that $\alpha=5+2 i$ does not divide $\beta=7+3 i$. Using the Euclidean algorithm express $\operatorname{gcd}(\alpha, \beta)=\alpha \lambda+\beta \eta$ for some Gaussian integers λ and η.
10. Let α and β be Gaussian integers not both 0 . Show that any two greatest common divisors of α and β are associates of one another.
11. Let $R=\mathbb{Z}[\sqrt{-2}]$. Let α, β be elements of R with $\beta \neq 0$. Show that there exist γ and δ such that $\alpha=\beta \gamma+\delta$ with $N(\delta)<N(\beta)$. Apply the algorithm to the specific case $\alpha=5+2 \sqrt{-2}$ and $\beta=3-\sqrt{-2}$
12. Try to prove the division algorithm for $R=\mathbb{Z}[\sqrt{-5}]$. What goes wrong? (Hint: Try to divide $\alpha=1+\sqrt{-5}$ by $\beta=2$.)
13. Classify all prime elements of the ring $R=\mathbb{Z}[\sqrt{-2}]$. Is there an element $\alpha \in R$ of norm 366 or 2015?
14. Solve the equation $2 x+(2+i) y=11-3 i$ in the Gaussian integers $x, y \in \mathbb{Z}[i]$.
