METU, Spring 2015, Math 366.
 Exercise Set 4

1. Prove that an integer of the form $4^{n}(8 m+7)$ cannot be represented as the sum of three squares.
2. Prove that every integer $n \geq 170$ is a sum of five squares, none of which are equal to zero. (Hint: Write $n-169=a^{2}+b^{2}+c^{2}+d^{2}$ for some integers). Represent 10169, 10170 and 10171 as a sum of five squares, none of which are equal to zero.
3. Express 366 and 2015 as a sum four squares using the Hamiltonian product.
4. A combination of three squares:
(a) Show that a positive integer n can be represented as the difference of two squares if and only if n is not of the form $4 k+2$.
(b) Show that every positive integer is of the form $x^{2}+y^{2}-z^{2}$.
(c) Represent 366 and 2015 in the form $x^{2}+y^{2}-z^{2}$.
5. Show that the number of positive cubes needed to represent every positive integer n is at least 9. (Hint $n=23$). Show that the number of positive cubes needed to represent every positive integer $n>N$ for some N is at least 4. (Hint: $n=9 k \pm 4$).
6. Determine all solutions of $x^{2}-a^{2} y^{2}=n$ for fixed integers a and n.
7. Set $\left(x_{0}, y_{0}\right)=(10,1)$ and define $\left(x_{n}, y_{n}\right)=\left(10 x_{n-1}+99 y_{n-1}, x_{n-1}+10 y_{n-1}\right)$ for $n \geq 1$.

- Show that $\left(x_{n}, y_{n}\right)$ is a solution of the Diophantine equation $x^{2}-99 y^{2}=1$ for all $n \geq 0$.
- Show that the Diophantine equation $x^{2}-99 y^{2}=1$ has infinitely many solutions.

