METU, Spring 2015, Math 366.
 Exercise Set 10

1. Let d be a negative squarefree integer. Suppose that $\mathrm{Cl}(d)$ is trivial, i.e. I_{d} is a principal ideal domain. Show that $d \equiv 5(\bmod 8)$ except when $d=-1,-2,-7$.
2. Show that I_{d} is a principal ideal domain for $-d \in\{1,2,3,7,11,19,43,67,163\}$.
3. Find the number of solutions to the Diophantine equation $x^{2}+2 y^{2}=55^{k}$ for all positive integers k in terms of k.
4. Find the ideal prime decomposition of ideals (2) and (3) in I_{7}. Show that I_{7} is a principal ideal domain. Does the factorization $(1+\sqrt{7})(1-\sqrt{7})=(-2)(3)$ contradict to the unique factorization?
5. For each of the following justify the isomorphism.
(a) $\mathrm{Cl}(-6) \cong \mathbb{Z} / 2 \mathbb{Z}$.
(b) $\mathrm{Cl}(-23) \cong \mathbb{Z} / 3 \mathbb{Z}$.
(c) $\mathrm{Cl}(-21) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(d) $\mathrm{Cl}(-39) \cong \mathbb{Z} / 4 \mathbb{Z}$.
(e) $\mathrm{Cl}(-103) \cong \mathbb{Z} / 5 \mathbb{Z}$.
6. Find two distinct prime ideals \mathfrak{p}_{1} and \mathfrak{p}_{2} in I_{-6} which are not principal. Show that $\mathfrak{p}_{1} \sim \mathfrak{p}_{2}$ (without using the fact that $\mathrm{Cl}(-6) \cong \mathbb{Z} / 2 \mathbb{Z}$).
7. Show that the Diophantine equation $x^{2}+2015 y^{2}=19^{2015}$ has no solutions.
8. Find the number of solutions of the following Diophantine equations in terms of k.
(a) $x^{2}+6 y^{2}=p^{k}$ for $p \in\{2,3,5,7,11,13\}$.
(b) $x^{2}+x y+6 y^{2}=p^{k}$ for $p \in\{2,3,5,59\}$.
