METU, Spring 2015, Math 366.

Exercise Set 10

- 1. Let d be a negative squarefree integer. Suppose that Cl(d) is trivial, i.e. I_d is a principal ideal domain. Show that $d \equiv 5 \pmod{8}$ except when d = -1, -2, -7.
- 2. Show that I_d is a principal ideal domain for $-d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}$.
- 3. Find the number of solutions to the Diophantine equation $x^2 + 2y^2 = 55^k$ for all positive integers k in terms of k.
- 4. Find the ideal prime decomposition of ideals (2) and (3) in I_7 . Show that I_7 is a principal ideal domain. Does the factorization $(1+\sqrt{7})(1-\sqrt{7})=(-2)(3)$ contradict to the unique factorization?
- 5. For each of the following justify the isomorphism.
 - (a) $Cl(-6) \cong \mathbb{Z}/2\mathbb{Z}$.
 - (b) $Cl(-23) \cong \mathbb{Z}/3\mathbb{Z}$.
 - (c) $Cl(-21) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - (d) $Cl(-39) \cong \mathbb{Z}/4\mathbb{Z}$.
 - (e) $Cl(-103) \cong \mathbb{Z}/5\mathbb{Z}$.
- 6. Find two distinct prime ideals \mathfrak{p}_1 and \mathfrak{p}_2 in I_{-6} which are not principal. Show that $\mathfrak{p}_1 \sim \mathfrak{p}_2$ (without using the fact that $\text{Cl}(-6) \cong \mathbb{Z}/2\mathbb{Z}$).
- 7. Show that the Diophantine equation $x^2 + 2015y^2 = 19^{2015}$ has no solutions.
- 8. Find the number of solutions of the following Diophantine equations in terms of k.
 - (a) $x^2 + 6y^2 = p^k$ for $p \in \{2, 3, 5, 7, 11, 13\}$.
 - (b) $x^2 + xy + 6y^2 = p^k$ for $p \in \{2, 3, 5, 59\}$.