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1. (12pts) Determine the fundamental solution of z* — 101y* = 1 using continued
fractions.

Solution: Set zy = v/101. We have 11 > z; > 10. Thus ag = 10. Set z; = ——. Then

ro—ag
1 V101 + 10
21 = = )
' V/I01 - 10 1
Since 21 > z; > 20, we have a; = 20. Set 2z = zlial. Then
1 1

2o = = = Z1.
T (VIOL+10)—20 V10I—10

It is obvious that this pattern continues forever and /101 = [10;20]. The continued
fraction [10;20] has a period of length 1. Thus the fundamental solution is given by the

first convergent Cy = 10 + 55 = 2. The fundamental solution is (zo, yo) = (201, 20).

2. (12pts) Let R be an integral domain. Suppose that ¢ and b are elements of R such
that ged(a,b) = ax + by for some x,y € R. Show that the ideal I = (a,b) is principal and
generated by ged(a, b).

Solution: Pick an element ¢ € I. Then ¢ = ar + bs for some r,s € R. We have
a = aged(a,b) and b = bged(a, b) for some a,b € R. Thus i = ged(a, b)(ar + bs). Since
ar + bs € R, we conclude that i € (ged(a, b)).

Pick an element j € (ged(a,b)). Then j = rged(a,b) for some r € R. We are given that
ged(a, b) = ax + by for some z,y € R. Thus j = r(ax + by) = a(rz) + b(ry). Therefore
J € (a,b).



3. (10pts) Show that there are infinitely many Pythagorean triples a? + v* = ¢* such
that |a — b| = 1.
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Solution: Suppose that a = m? — n? for some integers m > n > 0. Also set b = 2mn

and ¢ = m? + n?. The triple (a,b,c) is a Pythagorean triple. We want a — b = 1, i.e.

m? —n? — 2mn = 1. Using the substitution © = m — n and v = n, we obtain a Pell’s
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equation u? — 2v? = 1 which has infinitely many solutions with u,v > 0. For each of these

solutions m = u+wv and n = v are distinct. Note that as v increases ¢ = m? +n? increases
too. As a result each solution of u? — 2v? = 1 would give a different Pythagorean triple
(a,b,c) with a — b = 1.

4. (16pts) Let o = 15+ 3i and = 8 — i be Gaussian integers. Using the Euclidean
algorithm, find Gaussian integers A and 7 such that ged(«, ) = aA+fn. Find a generator
for the ideal I = (o, 8) in the ring Z[i].

Solution: Applying the Euclidean algorithm, we obtain

154 3i=(8—19)24 (—1+ 57)
8 —i=(—1+5i)(—i)+ (3—2i)
—1+5i=(3—-2i)(-1+4)+0

Thus we conlude that ged(a, ) = 3 — 2i. Applying the Euclidean algorithm in reverse,
we find that

ged(a, B) = B+ i(—1 4+ 5i)
=B +i(a—25)
= (1 - 2i)8 + ia.

We can choose A = 1 —2i and n = 4. A generator for the ideal I = («, 8) is 3 —2i (or any
associate). See Question 2.



5. (12pts) Show that the Diophantine equation z? + 2y*> = 3F has 2(k + 1) distinct
solutions.

Solution: Consider a = z + yy/—2 € Z[v/—2]. Note that N(«) = 3*. The ring Z[v/—2)]
is a Euclidean domain and there is a unique decomposition o = un7ns - - -1, in terms of
irreducible elements 1;. The element 7 = 1 + y/—2 and its conjugate 7’ = 1 — /=2 are
irreducible elements in Z[v/—2]. Moreover 7 and 7’ are not associates. Since 77’ = 3 we
must have n; = m or n; = 7’ for each i. Moreover 1 and —1 are the only units in /_s.
It follows that o = £m*~J(7’)/. There are 2(k + 1) such elements and each one give a
different solution of the Diophantine equation z? + 2y? = 3F.

6. (12pts) Show that « is irreducible in I, if N(«) is prime in Z. Give an example of
an irreducible element § € I; whose norm is not prime in Z.

Solution: Suppose that N(a) = p where p is prime in Z. Let A and 7 be elements in I,
such that & = A\y. Then N(a) = p = N(A)N(v). Without loss of generality, assume that
N(A) = 1. Then AN =1 and therefore A is a unit in /;. Thus « is irreducible.

Consider 8 = 1+ +/=5 € I_5. If 8 = nv for some 1, v € I_5, then taking norms we obtain
6 = N(n)N(v). The norm of a generic element a + by/—5 in I_s is equal to a® + 5b%.
It follows that there are no elements in /_5 of norm 2 or 3. Thus either N(n) = 1 or
N(v) =1 and therefore § is irreducible.



7. (10pts) Show that (2,1 + +/—7) is a principal ideal in I_7. Show that (2,1 + /—13)
is not a principal ideal in [_;3.

Solution: The element w = @ belongs to I_;. Note that 1 4+ y/—7 = 2w. Therefore

the ideal (2,14 /—7) is generated by 2, i.e. (2,14 +/—7) = (2).

Assume that (2,1 + 1/—13) is principal in I_13 = Z[v/—=13]. Then (2,1 + v/—=13) = ()
for some o € I_13. We have 2 = o\ and 1 + /=13 = an for some \,n € I_;3. Taking
norms we obtain 4 = N(a)N(A) and 14 = N(a)N(n). It follows that N(a)|2. A generic
element a 4+ b\/—13 in I_;5 has norm a® 4+ 13b? and it cannot be equal to 2. Thus a has
norm 1 and it is a unit. Therefore () = I_13. However 1 € I_13 but 1 & (2,1 + /—13),

a contradiction.

8. (16pts) If w is a unit in /4, then show that N(u) = £1. Determine the units in the

ring [_q;.

Solution: Suppose that u is a unit in I;. Then there exists u € I; such that uv = 1.
Since u,v € I; we have N(u), N(v) € Z. Thus N(u) =1 or N(u) = —1.

The element w = —“121“ belongs to I_j;. Moreover I_y; = Z[w]. A generic element

a + bw in I_;; has norm

2 2

b\ 2 b\ 2
~ (=) =-1
(a+3) +1(3)

has no solutions. On the other hand

b\ > b\ 2
Z 1m(=) =1

can only have solutions with b = 0. It follows that 1 and —1 are the only units in I_q;.

2 2
N(a+ bw) = (a+bw)(a+ buw') = <a+é) +11 <9> = a® + ab + 3b°.

The Diophantine equation



