M ETU
 Department of Mathematics

Elementary Number Theory II		
Midterm 2		
Code	: Math 366	Last Name :
Acad. Year	: 2015	Name
Semester	: Spring	Name
Instructor	: Küçüksakallı	Student No. :
		Signature
Time	: 17:40	8 QUESTIONS ON 4 PAGES
Duration	: 120 minutes	100 TOTAL POINTS
$1{ }^{1}$.$^{4}{ }^{5}$	

1. (12pts) Determine the fundamental solution of $x^{2}-101 y^{2}=1$ using continued fractions.

Solution: Set $z_{0}=\sqrt{101}$. We have $11>z_{0}>10$. Thus $a_{0}=10$. Set $z_{1}=\frac{1}{x_{0}-a_{0}}$. Then

$$
z_{1}=\frac{1}{\sqrt{101}-10}=\frac{\sqrt{101}+10}{1}
$$

Since $21>z_{1}>20$, we have $a_{1}=20$. Set $z_{2}=\frac{1}{z_{1}-a_{1}}$. Then

$$
z_{2}=\frac{1}{(\sqrt{101}+10)-20}=\frac{1}{\sqrt{101}-10}=z_{1}
$$

It is obvious that this pattern continues forever and $\sqrt{101}=[10 ; \overline{20}]$. The continued fraction $[10 ; \overline{20}]$ has a period of length 1 . Thus the fundamental solution is given by the first convergent $C_{1}=10+\frac{1}{20}=\frac{201}{20}$. The fundamental solution is $\left(x_{0}, y_{0}\right)=(201,20)$.
2. (12pts) Let R be an integral domain. Suppose that a and b are elements of R such that $\operatorname{gcd}(a, b)=a x+b y$ for some $x, y \in R$. Show that the ideal $I=(a, b)$ is principal and generated by $\operatorname{gcd}(a, b)$.

Solution: Pick an element $i \in I$. Then $i=a r+b s$ for some $r, s \in R$. We have $a=\tilde{a} \operatorname{gcd}(a, b)$ and $b=\tilde{b} \operatorname{gcd}(a, b)$ for some $\tilde{a}, \tilde{b} \in R$. Thus $i=\operatorname{gcd}(a, b)(\tilde{a} r+\tilde{b} s)$. Since $\tilde{a} r+\tilde{b} s \in R$, we conclude that $i \in(\operatorname{gcd}(a, b))$.

Pick an element $j \in(\operatorname{gcd}(a, b))$. Then $j=r \operatorname{gcd}(a, b)$ for some $r \in R$. We are given that $\operatorname{gcd}(a, b)=a x+b y$ for some $x, y \in R$. Thus $j=r(a x+b y)=a(r x)+b(r y)$. Therefore $j \in(a, b)$.
3. (10pts) Show that there are infinitely many Pythagorean triples $a^{2}+b^{2}=c^{2}$ such that $|a-b|=1$.

Solution: Suppose that $a=m^{2}-n^{2}$ for some integers $m>n>0$. Also set $b=2 m n$ and $c=m^{2}+n^{2}$. The triple (a, b, c) is a Pythagorean triple. We want $a-b=1$, i.e. $m^{2}-n^{2}-2 m n=1$. Using the substitution $u=m-n$ and $v=n$, we obtain a Pell's equation $u^{2}-2 v^{2}=1$ which has infinitely many solutions with $u, v>0$. For each of these solutions $m=u+v$ and $n=v$ are distinct. Note that as v increases $c=m^{2}+n^{2}$ increases too. As a result each solution of $u^{2}-2 v^{2}=1$ would give a different Pythagorean triple (a, b, c) with $a-b=1$.
4. (16pts) Let $\alpha=15+3 i$ and $\beta=8-i$ be Gaussian integers. Using the Euclidean algorithm, find Gaussian integers λ and η such that $\operatorname{gcd}(\alpha, \beta)=\alpha \lambda+\beta \eta$. Find a generator for the ideal $I=(\alpha, \beta)$ in the ring $\mathbb{Z}[i]$.

Solution: Applying the Euclidean algorithm, we obtain

$$
\begin{aligned}
15+3 i & =(8-i) 2+(-1+5 i) \\
8-i & =(-1+5 i)(-i)+(3-2 i) \\
-1+5 i & =(3-2 i)(-1+i)+0
\end{aligned}
$$

Thus we conlude that $\operatorname{gcd}(\alpha, \beta)=3-2 i$. Applying the Euclidean algorithm in reverse, we find that

$$
\begin{aligned}
\operatorname{gcd}(\alpha, \beta) & =\beta+i(-1+5 i) \\
& =\beta+i(\alpha-2 \beta) \\
& =(1-2 i) \beta+i \alpha .
\end{aligned}
$$

We can choose $\lambda=1-2 i$ and $\eta=i$. A generator for the ideal $I=(\alpha, \beta)$ is $3-2 i$ (or any associate). See Question 2.
5. (12pts) Show that the Diophantine equation $x^{2}+2 y^{2}=3^{k}$ has $2(k+1)$ distinct solutions.

Solution: Consider $\alpha=x+y \sqrt{-2} \in \mathbb{Z}[\sqrt{-2}]$. Note that $N(\alpha)=3^{k}$. The ring $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain and there is a unique decomposition $\alpha=u \eta_{1} \eta_{2} \cdots \eta_{s}$ in terms of irreducible elements η_{i}. The element $\pi=1+\sqrt{-2}$ and its conjugate $\pi^{\prime}=1-\sqrt{-2}$ are irreducible elements in $\mathbb{Z}[\sqrt{-2}]$. Moreover π and π^{\prime} are not associates. Since $\pi \pi^{\prime}=3$ we must have $\eta_{i}=\pi$ or $\eta_{i}=\pi^{\prime}$ for each i. Moreover 1 and -1 are the only units in I_{-2}. It follows that $\alpha= \pm \pi^{k-j}\left(\pi^{\prime}\right)^{j}$. There are $2(k+1)$ such elements and each one give a different solution of the Diophantine equation $x^{2}+2 y^{2}=3^{k}$.
6. (12pts) Show that α is irreducible in I_{d} if $N(\alpha)$ is prime in \mathbf{Z}. Give an example of an irreducible element $\beta \in I_{d}$ whose norm is not prime in \mathbf{Z}.

Solution: Suppose that $N(\alpha)=p$ where p is prime in \mathbb{Z}. Let λ and γ be elements in I_{d} such that $\alpha=\lambda \gamma$. Then $N(\alpha)=p=N(\lambda) N(\gamma)$. Without loss of generality, assume that $N(\lambda)=1$. Then $\lambda \lambda^{\prime}=1$ and therefore λ is a unit in I_{d}. Thus α is irreducible.

Consider $\beta=1+\sqrt{-5} \in I_{-5}$. If $\beta=\eta \nu$ for some $\eta, \nu \in I_{-5}$, then taking norms we obtain $6=N(\eta) N(\nu)$. The norm of a generic element $a+b \sqrt{-5}$ in I_{-5} is equal to $a^{2}+5 b^{2}$. It follows that there are no elements in I_{-5} of norm 2 or 3 . Thus either $N(\eta)=1$ or $N(\nu)=1$ and therefore β is irreducible.
7. (10pts) Show that $(2,1+\sqrt{-7})$ is a principal ideal in I_{-7}. Show that $(2,1+\sqrt{-13})$ is not a principal ideal in I_{-13}.

Solution: The element $w=\frac{\sqrt{-7}+1}{2}$ belongs to I_{-7}. Note that $1+\sqrt{-7}=2 w$. Therefore the ideal $(2,1+\sqrt{-7})$ is generated by 2, i.e. $(2,1+\sqrt{-7})=(2)$.

Assume that $(2,1+\sqrt{-13})$ is principal in $I_{-13}=\mathbb{Z}[\sqrt{-13}]$. Then $(2,1+\sqrt{-13})=(\alpha)$ for some $\alpha \in I_{-13}$. We have $2=\alpha \lambda$ and $1+\sqrt{-13}=\alpha \eta$ for some $\lambda, \eta \in I_{-13}$. Taking norms we obtain $4=N(\alpha) N(\lambda)$ and $14=N(\alpha) N(\eta)$. It follows that $N(\alpha) \mid 2$. A generic element $a+b \sqrt{-13}$ in I_{-13} has norm $a^{2}+13 b^{2}$ and it cannot be equal to 2 . Thus α has norm 1 and it is a unit. Therefore $(\alpha)=I_{-13}$. However $1 \in I_{-13}$ but $1 \notin(2,1+\sqrt{-13})$, a contradiction.
8. (16pts) If u is a unit in I_{d}, then show that $N(u)= \pm 1$. Determine the units in the ring I_{-11}.

Solution: Suppose that u is a unit in I_{d}. Then there exists $u \in I_{d}$ such that $u v=1$. Since $u, v \in I_{d}$ we have $N(u), N(v) \in \mathbb{Z}$. Thus $N(u)=1$ or $N(u)=-1$.

The element $w=\frac{\sqrt{-11}+1}{2}$ belongs to I_{-11}. Moreover $I_{-11}=\mathbb{Z}[w]$. A generic element $a+b w$ in I_{-11} has norm

$$
N(a+b w)=(a+b w)\left(a+b w^{\prime}\right)=\left(a+\frac{b}{2}\right)^{2}+11\left(\frac{b}{2}\right)^{2}=a^{2}+a b+3 b^{2} .
$$

The Diophantine equation

$$
\left(a+\frac{b}{2}\right)^{2}+11\left(\frac{b}{2}\right)^{2}=-1
$$

has no solutions. On the other hand

$$
\left(a+\frac{b}{2}\right)^{2}+11\left(\frac{b}{2}\right)^{2}=1
$$

can only have solutions with $b=0$. It follows that 1 and -1 are the only units in I_{-11}.

