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1. (12pts) Determine the fundamental solution of x2 − 101y2 = 1 using continued

fractions.

Solution: Set z0 =
√

101. We have 11 > z0 > 10. Thus a0 = 10. Set z1 = 1
x0−a0 . Then

z1 =
1√

101− 10
=

√
101 + 10

1
.

Since 21 > z1 > 20, we have a1 = 20. Set z2 = 1
z1−a1 . Then

z2 =
1

(
√

101 + 10)− 20
=

1√
101− 10

= z1.

It is obvious that this pattern continues forever and
√

101 = [10; 20]. The continued

fraction [10; 20] has a period of length 1. Thus the fundamental solution is given by the

first convergent C1 = 10 + 1
20

= 201
20

. The fundamental solution is (x0, y0) = (201, 20).

2. (12pts) Let R be an integral domain. Suppose that a and b are elements of R such

that gcd(a, b) = ax+ by for some x, y ∈ R. Show that the ideal I = (a, b) is principal and

generated by gcd(a, b).

Solution: Pick an element i ∈ I. Then i = ar + bs for some r, s ∈ R. We have

a = ã gcd(a, b) and b = b̃ gcd(a, b) for some ã, b̃ ∈ R. Thus i = gcd(a, b)(ãr + b̃s). Since

ãr + b̃s ∈ R, we conclude that i ∈ (gcd(a, b)).

Pick an element j ∈ (gcd(a, b)). Then j = r gcd(a, b) for some r ∈ R. We are given that

gcd(a, b) = ax + by for some x, y ∈ R. Thus j = r(ax + by) = a(rx) + b(ry). Therefore

j ∈ (a, b).



3. (10pts) Show that there are infinitely many Pythagorean triples a2 + b2 = c2 such

that |a− b| = 1.

Solution: Suppose that a = m2 − n2 for some integers m > n > 0. Also set b = 2mn

and c = m2 + n2. The triple (a, b, c) is a Pythagorean triple. We want a − b = 1, i.e.

m2 − n2 − 2mn = 1. Using the substitution u = m − n and v = n, we obtain a Pell’s

equation u2−2v2 = 1 which has infinitely many solutions with u, v > 0. For each of these

solutions m = u+v and n = v are distinct. Note that as v increases c = m2 +n2 increases

too. As a result each solution of u2 − 2v2 = 1 would give a different Pythagorean triple

(a, b, c) with a− b = 1.

4. (16pts) Let α = 15 + 3i and β = 8 − i be Gaussian integers. Using the Euclidean

algorithm, find Gaussian integers λ and η such that gcd(α, β) = αλ+βη. Find a generator

for the ideal I = (α, β) in the ring Z[i].

Solution: Applying the Euclidean algorithm, we obtain

15 + 3i = (8− i)2 + (−1 + 5i)

8− i = (−1 + 5i)(−i) + (3− 2i)

−1 + 5i = (3− 2i)(−1 + i) + 0

Thus we conlude that gcd(α, β) = 3 − 2i. Applying the Euclidean algorithm in reverse,

we find that

gcd(α, β) = β + i(−1 + 5i)

= β + i(α− 2β)

= (1− 2i)β + iα.

We can choose λ = 1− 2i and η = i. A generator for the ideal I = (α, β) is 3− 2i (or any

associate). See Question 2.
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5. (12pts) Show that the Diophantine equation x2 + 2y2 = 3k has 2(k + 1) distinct

solutions.

Solution: Consider α = x + y
√
−2 ∈ Z[

√
−2]. Note that N(α) = 3k. The ring Z[

√
−2]

is a Euclidean domain and there is a unique decomposition α = uη1η2 · · · ηs in terms of

irreducible elements ηi. The element π = 1 +
√
−2 and its conjugate π′ = 1 −

√
−2 are

irreducible elements in Z[
√
−2]. Moreover π and π′ are not associates. Since ππ′ = 3 we

must have ηi = π or ηi = π′ for each i. Moreover 1 and −1 are the only units in I−2.

It follows that α = ±πk−j(π′)j. There are 2(k + 1) such elements and each one give a

different solution of the Diophantine equation x2 + 2y2 = 3k.

6. (12pts) Show that α is irreducible in Id if N(α) is prime in Z. Give an example of

an irreducible element β ∈ Id whose norm is not prime in Z.

Solution: Suppose that N(α) = p where p is prime in Z. Let λ and γ be elements in Id
such that α = λγ. Then N(α) = p = N(λ)N(γ). Without loss of generality, assume that

N(λ) = 1. Then λλ′ = 1 and therefore λ is a unit in Id. Thus α is irreducible.

Consider β = 1 +
√
−5 ∈ I−5. If β = ην for some η, ν ∈ I−5, then taking norms we obtain

6 = N(η)N(ν). The norm of a generic element a + b
√
−5 in I−5 is equal to a2 + 5b2.

It follows that there are no elements in I−5 of norm 2 or 3. Thus either N(η) = 1 or

N(ν) = 1 and therefore β is irreducible.
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7. (10pts) Show that (2, 1 +
√
−7) is a principal ideal in I−7. Show that (2, 1 +

√
−13)

is not a principal ideal in I−13.

Solution: The element w =
√
−7+1
2

belongs to I−7. Note that 1 +
√
−7 = 2w. Therefore

the ideal (2, 1 +
√
−7) is generated by 2, i.e. (2, 1 +

√
−7) = (2).

Assume that (2, 1 +
√
−13) is principal in I−13 = Z[

√
−13]. Then (2, 1 +

√
−13) = (α)

for some α ∈ I−13. We have 2 = αλ and 1 +
√
−13 = αη for some λ, η ∈ I−13. Taking

norms we obtain 4 = N(α)N(λ) and 14 = N(α)N(η). It follows that N(α)|2. A generic

element a + b
√
−13 in I−13 has norm a2 + 13b2 and it cannot be equal to 2. Thus α has

norm 1 and it is a unit. Therefore (α) = I−13. However 1 ∈ I−13 but 1 6∈ (2, 1 +
√
−13),

a contradiction.

8. (16pts) If u is a unit in Id, then show that N(u) = ±1. Determine the units in the

ring I−11.

Solution: Suppose that u is a unit in Id. Then there exists u ∈ Id such that uv = 1.

Since u, v ∈ Id we have N(u), N(v) ∈ Z. Thus N(u) = 1 or N(u) = −1.

The element w =
√
−11+1
2

belongs to I−11. Moreover I−11 = Z[w]. A generic element

a+ bw in I−11 has norm

N(a+ bw) = (a+ bw)(a+ bw′) =

(
a+

b

2

)2

+ 11

(
b

2

)2

= a2 + ab+ 3b2.

The Diophantine equation (
a+

b

2

)2

+ 11

(
b

2

)2

= −1

has no solutions. On the other hand(
a+

b

2

)2

+ 11

(
b

2

)2

= 1

can only have solutions with b = 0. It follows that 1 and −1 are the only units in I−11.
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