M ETU
 Department of Mathematics

Elementary Number Theory II		
Midterm 1		
Code	: Math 366	Last Name
Acad. Year	: 2015	Name
Semester	: Spring	Name
Instructor	: Küçüksakallı	Student No. :
Date	: March	Signature
Time	: 17:40	6 QUESTIONS ON 4 PAGES
Duration	: 100 minutes	100 TOTAL POINTS
${ }^{1}{ }^{2}$	$3^{3}{ }^{4}{ }^{4}$	

1. (12pts) Consider the integers $m=401, n=901$ and $k=1603$.
(a)Express $m \cdot n$ as a sum of two squares.

Solution: We can obtain such a representation by using the identity which convert a product of sums of squares to a sum of squares: $401 \cdot 901=\left(20^{2}+1\right) \cdot\left(30^{2}+1\right)=$ $(20 \cdot 30-1 \cdot 1)^{2}+(20 \cdot 1+30 \cdot 1)=599^{2}+50^{2}$.
(b)Express $m \cdot k$ as a sum of four squares.

Solution: We have $m=20^{2}+1$ and $n=40^{2}+1^{2}+1^{2}+1^{2}$. Set $\alpha=20+i$ and $\beta=40+i+j+k$. Using the Hamiltonian product we get $\alpha \beta=799+60 i-19 j+21 k$. Therefore we have $401 \cdot 1603=799^{2}+60^{2}+19^{2}+21^{2}$.
2. (12pts) A right triangle with sides of integer length has circumference $2 p q$ where p and q are primes such that $p<q$. Find the area of this triangle in terms of p and q.

Solution: The sides of the triangle are of lengths $d\left(a^{2}-b^{2}\right), d(2 a b)$ and $d\left(a^{2}+b^{2}\right)$ for some $a>b>0$ with $\operatorname{gcd}(a, b)=1$. We are give that the circumference is equal to $2 p q$ with $p<q$. On the other hand the circumference is equal to $d\left(2 a^{2}+2 a b\right)=2 a d(a+b)$. In summary

$$
a d(a+b)=p q .
$$

Since $a>b>0$, we must have $d=1, a=p$ and $q=a+b$. It follows that $b=q-p$ and $a^{2}-b^{2}=p^{2}-(q-p)^{2}$. Moreover we have $2 a b=2 p(q-p)$. The area is equal to

$$
A=\frac{\left(a^{2}-b^{2}\right)(2 a b)}{2}=q(2 p-q) p(q-p) .
$$

3. (24pts) The graph of elliptic curve $E: y^{2}=x^{3}-15 x+22$ is given below. Consider $P=(-1,6), Q=(2,0)$ and $R=(3,2)$ which are points on E.

(a)Show that $P+P+P=Q$. Show that P is a torsion point. Find the order of P.

Solution: Using implicit differentiation we find that $y^{\prime}=\left(3 x^{2}-15\right) / 2 y$. We have $y^{\prime}=-1$ at $P(-1,6)$. The tangent line to E thru P is $\ell: y=-(x+1)+6$. Note that ℓ passes thru $R(3,2) \in E$. Thus $P+P=-R$ where $-R=(3,-2)$. Now we want to compute $P+(P+P)=P+(-R)$. The line passing through P and $-R$ has the equation $y=-2(x+1)+6$. Note that this line intersect E at a third point $Q(2,0)$. The symmetry along the x-axis leave Q fixed and we have $P+P+P=Q$. Note that $Q+Q=\infty$. It follows that $6 P=\infty$. Since the order of P is not equal to 2 or 3 , we conclude that the order of P is 6 .
(b) Show that $R+R+R=\infty$. Show that $y^{\prime \prime}=0$ at R.

Solution: We can use the fact $R=-2 P$ from part (a). It follows that $3 R=-6 P=\infty$. Now we want to see that $y^{\prime \prime}$ vanishes at $R(3,2)$. We have

$$
y^{\prime \prime}=\frac{6 x \cdot 2 y-\left(3 x^{2}-15\right) \cdot 2 y^{\prime}}{(2 y)^{2}}
$$

Since $y^{\prime}=3$ at R, it follows that

$$
y^{\prime \prime}=\frac{18 \cdot 4-12 \cdot 6}{4^{2}}=0
$$

4. (16pts) Find all solutions of the Diophantine equation $\left(x^{2}+2 x y+2 y^{2}-5\right)^{4}+1=z^{4}$.

Solution: The Fermat's equation $a^{n}+b^{n}=c^{n}$ with $n=4$ has only the trivial solutions, i.e. $a=0$ or $b=0$. We must have

$$
x^{2}+2 x y+2 y^{2}-5=(x+y)^{2}+y^{2}-5=0 .
$$

The equation $(x+y)^{2}+y^{2}=5$ has only eight solutions in total; four of them corresponds to $|x+y|=2,|y|=1$ and the other four corresponds to $|x+y|=1,|y|=2$. Moreover z may be either 1 or -1 . Therefore there are sixteen solutions in total.
5. (12pts) If p and q are primes of the form $4 k+1$, then show that $n=p \cdot q$ can be written as a sum of two squares in at least two different ways (aside from the order and signs of summands).

Solution: There exist integers $a>b>0$ and $c>d>0$ such that $p=a^{2}+b^{2}$ and $q=c^{2}+d^{2}$. We have the following equalities

$$
\begin{aligned}
p q & =(a c-b d)^{2}+(a d+b c)^{2} \\
& =(a d-b c)^{2}+(a c+b d)^{2}
\end{aligned}
$$

The choice of a, b, c and d gives that $a c-b d>0$. Without loss of generality, we can assume that $a d-b c \geq 0$. Because otherwise we can switch p and q.

Note that $a c-b d$ and $a c+b d$ are different. In order to finish the proof, it is enough to see that $a c-b d$ and $a d-b c$ are different.

Assume otherwise, and consider the equation $a c-b d=a d-b c$. From here, we get $c(a+b)=d(a+b)$. It follows that $c=d$ and $q=c^{2}+d^{2}=2 c^{2}$ gives a contradiction.
6. (24pts) Find all integer solutions of the equation $a^{2}+3 b^{2}=c^{2}$. Verify your formula by giving a few examples.

Solution: Suppose that $c \neq 0$. Then the question is equivalent to finding all rational points on the ellipse $x^{2}+3 y^{2}=1$ where $x=a / c$ and $y=b / c$.

Consider the line $\ell: y=r(x-1)$ which passes through $(1,0)$ with rational slope r. The line ℓ intersects the ellipse at a point $P=\left(P_{x}, P_{y}\right)$ with rational coordinates. Moreover any line which passes through a rational point and $(0,1)$ would be of this form.

Putting $y=r(x-1)$ in the equation $x^{2}+3 y^{2}-1=0$, we get

$$
x^{2}+3 r^{2}(x-1)^{2}-1=(x-1)\left[\left(1+3 r^{2}\right) x+\left(1-3 r^{2}\right)\right]=0 .
$$

It follows that

$$
P_{x}=\frac{3 r^{2}-1}{3 r^{2}+1} \quad \text { and } \quad P_{y}=r\left(P_{x}-1\right)=\frac{-2 r}{3 r^{2}+1} .
$$

Putting $r=m / n$, we find that all positive solutions to the Diophantine equation $x^{2}+3 y^{2}=$ z^{2} are given by

$$
\left(\left|d\left(3 m^{2}-n^{2}\right)\right|,|d(2 m n)|,\left|d\left(3 m^{2}+n^{2}\right)\right|\right)
$$

for some integers m, n and d. For example if $m=2, n=1$ and $d=1$, we have a positive solution $(11,4,3)$. Another positive solution $(17,6,28)$ can be found by putting $m=3, n=1$ and $d=1$. With possible change of signs, one can obtain all other solutions by this formula.

