Department of Mathematics

Elementary Number Theory II			
Final			
Code	: Math 366	Last Name Name Student No. Signature	
Acad. Year	: 2015		
Semester	: Spring		
Instructor	: Küçüksakallı		
	- June 5, 0		
Time	: 13:30	8 QUESTIONS ON 4 PAGES100 TOTAL POINTS	
Duration	: 135 minutes		
${ }^{2}$	$\left.{ }^{3}\right\|^{4}{ }^{5}$		

1. (12pts) Let R be an integral domain and let A and B be two nonzero ideals of R. Suppose that $A B$ is principal and it is generated by $a_{0} b_{0}$ with $a_{0} \in A$ and $b_{0} \in B$. Show that A is principal and generated by a_{0}.

Solution: Let a be an element of A. Then $a b_{0} \in A B$ and there exists $r \in R$ such that $a b_{0}=r a_{0} b_{0}$. It follows that $b_{0}\left(a-r a_{0}\right)=0$. The ideal $A B$ is nonzero and therefore the element b_{0} is not zero. Using the fact that R is an integral domain we can cancel b_{0} from the equation $b_{0}\left(a-r a_{0}\right)=0$ and obtain $a=r a_{0}$ for some $r \in R$.
2. (12pts) Prove that the Diophantine equation $y^{2}=x^{3}-x$ has only the trivial solutions with $y=0$.

Solution: Note that the right hand side of the Diophantine equation $y^{2}=x^{3}-x$ can be factored as $(x-1)(x)(x+1)$. Assume that x is not equal to 1,0 or -1 . If the integers $x-1, x$ and $x+1$ are pairwise coprime then each one must be a perfect square (up to ± 1) since their product is a perfect square (\mathbb{Z} is a UFD). If the integers $x-1, x$ and $x+1$ are not pairwise coprime then we must have $\operatorname{gcd}(x-1, x+1)=2$. Write $x=2 k+1$. Then the Diophantine equation becomes $y^{2}=2 k(2 k+1)(2 k+2)$. It is obvious that y is even. Set $y=2 \ell$. Then $\ell^{2}=k(2 k+1)(k+1)$. The integers $k, 2 k+1$ and $k+1$ are pairwise coprime and their product is a perfect square. It follows that k and $k+1$ are perfect squares. However this is a contradiction to the assumption x is not equal to 1,0 or -1 .
3. (12pts) For each of the following ideals in $I_{-5}=\mathbb{Z}[\sqrt{-5}]$, determine its norm and explain briefly how you find it.

- $\mathfrak{a}_{1}=(1,1+\sqrt{-5})$.

Solution: We have $N\left(\mathfrak{a}_{1}\right)=1$ since \mathfrak{a}_{1} contains the unit 1 .

- $\mathfrak{a}_{2}=(2,1+\sqrt{-5})$.

Solution: The ideal prime decomposition of (2) in I_{-5} is given by (2) $=\mathfrak{a}_{2}^{2}$. It follows that $N\left(\mathfrak{a}_{2}\right)=2$.

- $\mathfrak{a}_{3}=(3,1+\sqrt{-5})$.

Solution: The ideal prime decomposition of (3) in I_{-5} is given by $(3)=\mathfrak{a}_{3} \mathfrak{a}_{3}^{\prime}$. It follows that $N\left(\mathfrak{a}_{3}\right)=3$.

- $\mathfrak{a}_{4}=(4,1+\sqrt{-5})$.

Solution: Note that $\mathfrak{a}_{4}=(4,1+\sqrt{-5}, 6)=(2,1+\sqrt{-5})$. Therefore $N\left(\mathfrak{a}_{4}\right)=2$.

- $\mathfrak{a}_{5}=(5,1+\sqrt{-5})$.

Solution: The ideal \mathfrak{a}_{5} contains the unit $1=(1+\sqrt{-5})(1-\sqrt{-5})-5$. Thus we have $N\left(\mathfrak{a}_{5}\right)=1$.

- $\mathfrak{a}_{6}=(6,1+\sqrt{-5})$.

Solution: We have $\mathfrak{a}_{6}=(1+\sqrt{-5})$. Therefore $N\left(\mathfrak{a}_{6}\right)=|N(1+\sqrt{-5})|=6$.
4. (12pts) Find the number of ideals in $I_{-14}=\mathbf{Z}[\sqrt{-14}]$ containing the element 30 .

Solution: Suppose that \mathfrak{a} is an ideal containing the element 30. It follows that $\mathfrak{a} \supseteq$ (30) and therefore $\mathfrak{a} \mid(30)$. The ideal prime decomposition of (30) is given by

$$
(30)=\mathfrak{p}_{2}^{2} \mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime} \mathfrak{p}_{5} \mathfrak{p}_{5}^{\prime} .
$$

where $\mathfrak{p}_{2}=(2, \sqrt{-14}), \mathfrak{p}_{3}=(3,1+\sqrt{-15}), \mathfrak{p}_{3}^{\prime}=(3,1-\sqrt{-15}), \mathfrak{p}_{5}=(5,1+\sqrt{-15})$ and $\mathfrak{p}_{5}^{\prime}=(5,1-\sqrt{-15})$. Therefore there are $48=3 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ ideals of I_{-14} containing the element 30 .
5. (12pts) Show that $I_{-5}=\mathbf{Z}[\sqrt{-5}]$ is not a Euclidean domain under the norm map $a+b \sqrt{-5} \mapsto a^{2}+5 b^{2}$ without using the fact that E.D. \Longrightarrow P.I.D. \Longrightarrow U.F.D..

Solution: Assume that I_{-5} is a Euclidean domain. Set $\alpha=1+\sqrt{-5}$ and $\beta=2$. There exist $\gamma, \delta \in \mathbf{Z}[\sqrt{-5}]$ such that $\alpha=\beta \gamma+\delta$ where $\delta=0$ or $N(\delta)<4$. Since $N(\beta) \nmid N(\alpha)$, the element δ cannot be zero. If $N(\delta)=1$, then $(2,1+\sqrt{-5})=(\delta)=\mathbf{Z}[\sqrt{-5}]$. However this is not possible since $(2,1+\sqrt{-5})^{2}=(2)$. Observe that there are no elements in $\mathbf{Z}[\sqrt{-5}]$ of norm 2 or 3 . We conclude that $\mathbf{Z}[\sqrt{-5}]$ is not a Euclidean domain under the norm map $a+b \sqrt{-5} \mapsto a^{2}+5 b^{2}$.
6. (12pts) Show that $I_{-10}=\mathbb{Z}[\sqrt{-10}]$ is not a unique factorization domain by factoring $14 \in I_{-10}$ in two different ways.

Solution: Note that $14=2 \cdot 7=(2+\sqrt{-10})(2-\sqrt{-10})$. The norm of an arbitrary element $\alpha=a+b \sqrt{-10} \in I_{-10}$ is given by $N(\alpha)=a^{2}+10 b^{2}$. Note that $N(\alpha)$ cannot be equal to 2 or 7 . It follows that the elements $2,7,2+\sqrt{-10}$ and $2-\sqrt{-10}$ are irreducible. We also observe that these elements are not associates of each other since they don't differ by ± 1 which are the only units in the ring I_{-10}. We conlude that I_{-10} is not a unique factorization domain.
7. (16pts) Show that $\mathrm{Cl}(-6) \cong \mathbb{Z} / 2 \mathbb{Z}$ (Minkowski's constant is slightly bigger than 3 .).

Solution: We start with finding prime ideal decomposition of (2) and (3) in $I_{-6}=$ $\mathbf{Z}[\sqrt{-6}]$. Set $\mathfrak{p}_{2}=(2, \sqrt{-6})$ and $\mathfrak{p}_{2}=(3, \sqrt{-6})$ We have $(2)=\mathfrak{p}_{2}^{2}$ and $(3)=\mathfrak{p}_{3}^{2}$. The class group of I_{-6} is given by

$$
\mathrm{Cl}(-6)=\{[\mathfrak{a}]: N(\mathfrak{a}) \leq 3\}=\left\{[(1)],\left[\mathfrak{p}_{2}\right],\left[\mathfrak{p}_{3}\right]\right\} .
$$

The group $\mathrm{Cl}(-6)$ cannot be $\mathbb{Z} / 3 \mathbb{Z}$ since there is no element of order 3 . The ideal \mathfrak{p}_{2} is not principal because there is no element in I_{-6} of norm 2 . Thus $\mathrm{Cl}(-6)$ is not trivial, either. We conclude that the group $\mathrm{Cl}(-6)$ must be isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$.
8. (12pts) Find the number of solutions to the Diophantine equation $x^{2}+6 y^{2}=5^{366}$.

Solution: There is a one-to-one correspondence between the the solutions of this Diophantine equation and the generators of principal ideals of I_{-6} of norm 5^{366}. An ideal $\mathfrak{a} \subseteq I_{-6}$ of norm 5^{366} must be of the following form

$$
\mathfrak{a}=\left(\mathfrak{p}_{5}\right)^{i}\left(\mathfrak{p}_{5}^{\prime}\right)^{366-i}, \quad i \in\{0,1,2, \ldots, 366\}
$$

where $\mathfrak{p}_{5}=(5,2+\sqrt{6})$ and $\mathfrak{p}_{5}^{\prime}=(5,2-\sqrt{6})$. The ideal \mathfrak{a} is principal for each i since

$$
[\mathfrak{a}]=\left[\left(\mathfrak{p}_{5}\right)^{i}\left(\mathfrak{p}_{5}^{\prime}\right)^{366-i}\right]=\left[\left(\mathfrak{p}_{5}\right)^{i}\left(\mathfrak{p}_{5}\right)^{366-i}\right]=\left[\left(\mathfrak{p}_{5}\right)^{366}\right]=[(1)] .
$$

The last equality follows from the fact that $\mathrm{Cl}(-6) \cong \mathbb{Z} / 2 \mathbb{Z}$, see the previous question. There are 367 ideals of I_{-6} of prescribed norm. There are two units in I_{-6}, namely 1 and -1 . It follows that there are $734=2 \cdot 367$ elements in I_{-6} of norm 5^{366}. We conlude that the Diophantine equation $x^{2}+6 y^{2}=5^{366}$ has 734 distinct solutions.

