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1. (12pts) Let R be an integral domain and let A and B be two nonzero ideals of R.

Suppose that AB is principal and it is generated by a0b0 with a0 ∈ A and b0 ∈ B. Show

that A is principal and generated by a0.

Solution: Let a be an element of A. Then ab0 ∈ AB and there exists r ∈ R such that

ab0 = ra0b0. It follows that b0(a − ra0) = 0. The ideal AB is nonzero and therefore the

element b0 is not zero. Using the fact that R is an integral domain we can cancel b0 from

the equation b0(a− ra0) = 0 and obtain a = ra0 for some r ∈ R.

2. (12pts) Prove that the Diophantine equation y2 = x3−x has only the trivial solutions

with y = 0.

Solution: Note that the right hand side of the Diophantine equation y2 = x3− x can be

factored as (x − 1)(x)(x + 1). Assume that x is not equal to 1, 0 or −1. If the integers

x − 1, x and x + 1 are pairwise coprime then each one must be a perfect square (up to

±1) since their product is a perfect square (Z is a UFD). If the integers x− 1, x and x+ 1

are not pairwise coprime then we must have gcd(x − 1, x + 1) = 2. Write x = 2k + 1.

Then the Diophantine equation becomes y2 = 2k(2k + 1)(2k + 2). It is obvious that y

is even. Set y = 2`. Then `2 = k(2k + 1)(k + 1). The integers k, 2k + 1 and k + 1 are

pairwise coprime and their product is a perfect square. It follows that k and k + 1 are

perfect squares. However this is a contradiction to the assumption x is not equal to 1, 0

or −1.



3. (12pts) For each of the following ideals in I−5 = Z[
√
−5 ], determine its norm and

explain briefly how you find it.

• a1 = (1, 1 +
√
−5).

Solution: We have N(a1) = 1 since a1 contains the unit 1.

• a2 = (2, 1 +
√
−5).

Solution: The ideal prime decomposition of (2) in I−5 is given by (2) = a22. It

follows that N(a2) = 2.

• a3 = (3, 1 +
√
−5).

Solution: The ideal prime decomposition of (3) in I−5 is given by (3) = a3a
′
3. It

follows that N(a3) = 3.

• a4 = (4, 1 +
√
−5).

Solution: Note that a4 = (4, 1 +
√
−5, 6) = (2, 1 +

√
−5). Therefore N(a4) = 2.

• a5 = (5, 1 +
√
−5).

Solution: The ideal a5 contains the unit 1 = (1 +
√
−5)(1 −

√
−5) − 5. Thus we

have N(a5) = 1.

• a6 = (6, 1 +
√
−5).

Solution: We have a6 = (1 +
√
−5). Therefore N(a6) = |N(1 +

√
−5)| = 6.

4. (12pts) Find the number of ideals in I−14 = Z[
√
−14 ] containing the element 30.

Solution: Suppose that a is an ideal containing the element 30. It follows that a ⊇ (30)

and therefore a|(30). The ideal prime decomposition of (30) is given by

(30) = p22p3p
′
3p5p

′
5.

where p2 = (2,
√
−14), p3 = (3, 1 +

√
−15), p′3 = (3, 1 −

√
−15), p5 = (5, 1 +

√
−15) and

p′5 = (5, 1 −
√
−15). Therefore there are 48 = 3 · 2 · 2 · 2 · 2 ideals of I−14 containing the

element 30.
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5. (12pts) Show that I−5 = Z[
√
−5 ] is not a Euclidean domain under the norm map

a+ b
√
−5 7→ a2 + 5b2 without using the fact that E.D. =⇒ P.I.D. =⇒ U.F.D..

Solution: Assume that I−5 is a Euclidean domain. Set α = 1 +
√
−5 and β = 2. There

exist γ, δ ∈ Z[
√
−5 ] such that α = βγ + δ where δ = 0 or N(δ) < 4. Since N(β) - N(α),

the element δ cannot be zero. If N(δ) = 1, then (2, 1 +
√
−5) = (δ) = Z[

√
−5 ]. However

this is not possible since (2, 1 +
√
−5)2 = (2). Observe that there are no elements in

Z[
√
−5 ] of norm 2 or 3. We conclude that Z[

√
−5 ] is not a Euclidean domain under the

norm map a+ b
√
−5 7→ a2 + 5b2.

6. (12pts) Show that I−10 = Z[
√
−10 ] is not a unique factorization domain by factoring

14 ∈ I−10 in two different ways.

Solution: Note that 14 = 2 · 7 = (2 +
√
−10)(2 −

√
−10). The norm of an arbitrary

element α = a+ b
√
−10 ∈ I−10 is given by N(α) = a2 + 10b2. Note that N(α) cannot be

equal to 2 or 7. It follows that the elements 2, 7, 2 +
√
−10 and 2−

√
−10 are irreducible.

We also observe that these elements are not associates of each other since they don’t differ

by ±1 which are the only units in the ring I−10. We conlude that I−10 is not a unique

factorization domain.
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7. (16pts) Show that Cl(−6) ∼= Z/2Z (Minkowski’s constant is slightly bigger than 3.).

Solution: We start with finding prime ideal decomposition of (2) and (3) in I−6 =

Z[
√
−6 ]. Set p2 = (2,

√
−6) and p2 = (3,

√
−6) We have (2) = p22 and (3) = p23. The class

group of I−6 is given by

Cl(−6) = {[a] : N(a) ≤ 3} = {[(1)], [p2], [p3]}.

The group Cl(−6) cannot be Z/3Z since there is no element of order 3. The ideal p2 is

not principal because there is no element in I−6 of norm 2. Thus Cl(−6) is not trivial,

either. We conclude that the group Cl(−6) must be isomorphic to Z/2Z.

8. (12pts) Find the number of solutions to the Diophantine equation x2 + 6y2 = 5366.

Solution: There is a one-to-one correspondence between the the solutions of this Dio-

phantine equation and the generators of principal ideals of I−6 of norm 5366. An ideal

a ⊆ I−6 of norm 5366 must be of the following form

a = (p5)
i (p′5)

366−i
, i ∈ {0, 1, 2, . . . , 366}

where p5 = (5, 2 +
√

6) and p′5 = (5, 2−
√

6). The ideal a is principal for each i since

[a] = [(p5)
i (p′5)

366−i
] = [(p5)

i (p5)
366−i] = [(p5)

366] = [(1)].

The last equality follows from the fact that Cl(−6) ∼= Z/2Z, see the previous question.

There are 367 ideals of I−6 of prescribed norm. There are two units in I−6, namely 1 and

−1. It follows that there are 734 = 2 · 367 elements in I−6 of norm 5366. We conlude that

the Diophantine equation x2 + 6y2 = 5366 has 734 distinct solutions.
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