Math 366 - Spring 2013 - METU

Sample Questions

1. Diophantine Equations

- (a) Determine all solutions to the Diophantine equation $x^2 + y^2 = z^2$ such that gcd(x, y, z) = 1.
- (b) For which positive integers n, the Diophantine equation $x^n + y^n = z^2$ has only the trivial solutions?
- (c) Describe a process which gives infinitely many primitive solutions to the system of Diophantine equations $a^2 + b^2 = c^2$ and a b = 17.

2. Gaussian Integers

- (a) Find the greatest common divisor of the Gaussian integers $\alpha = 23 + 11\sqrt{-1}$ and $\beta = 26$. Find Gaussian integers γ and λ such that $gcd(\alpha, \beta) = \gamma \alpha + \lambda \beta$. Find the prime factorization of α and β .
- (b) Find the number of solutions of the Diophantine equations $x^2 + y^2 = 36^6$ and $x^2 + y^2 = 20^{13}$.
- (c) Determine all solutions to the Diophantine equation $x^2 + y^2 = z^2$ such that gcd(x, y, z) = 1 (using the arithmetic of Gaussian integers).

3. Arithmetic in Quadratic Fields

- (a) Recall that $I_d = \{ \alpha \in \mathbb{Q}(\sqrt{d}) : \operatorname{Tr}(\alpha), \operatorname{N}(\alpha) \in \mathbb{Z} \}$ for some square free integer d. Show that I_d is a subring of complex numbers.
- (b) Determine the set of units in rings I_3 and I_{-3} .
- (c) Let α, β be non-zero elements of I_d where d is a square free integer. If α divides β , then show that $N(\alpha)$ divides $N(\beta)$. Show that the converse does not hold for any value of d.
- (d) Determine all solutions of the Diophantine equation $x^2 17y^2 = 19$.

4. Factorization Theory in Quadratic Fields

- (a) Show that the Diophantine equation $x^2 + 13y^2 = 73^{73}$ has no solutions.
- (b) Show that the ring $I_{-2} = \mathbb{Z}[\sqrt{-2}]$ is a PID. Show that a prime p splits in I_{-2} if and only if $p \equiv 1, 3 \pmod{8}$. Find the number of solutions to the Diophantine equation $x^2 + 2y^2 = 55^m$ for all positive integers m.
- (c) Let $p \neq 2, 5$ be a prime number in \mathbb{Z} . Show that $(p) = \mathfrak{p}\mathfrak{p}'$ in I_{-5} if and only if $p \equiv 1, 3, 7, 9 \pmod{20}$. You are given that $|Cl(I_{-5})| = 2$ and \mathfrak{p} is principal if and only if $p \equiv 1, 9 \pmod{20}$. Find the number of solutions to each of the Diophantine equations $x^2 + 5y^2 = m^4$ where $m \in \{7, 21, 41, 123, 2013\}$.
- (d) Show that the class group $Cl(I_{-6})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Find two distinct non-principal prime ideals $\mathfrak{p}_1, \mathfrak{p}_2 \subset I_{-6}$ and show that $\mathfrak{p}_1 \sim \mathfrak{p}_2$.
- (e) You are given that $Cl(I_{-14}) \cong \mathbb{Z}/4\mathbb{Z}$. Find the number of solutions to the Diophantine equation $x^2 + 14y^2 = p^{12}$ for $p \in \{7, 13, 23\}$.