Sample Questions

1. Diophantine Equations

(a) Determine all solutions to the Diophantine equation $x^{2}+y^{2}=z^{2}$ such that $\operatorname{gcd}(x, y, z)=1$
(b) For which positive integers n, the Diophantine equation $x^{n}+y^{n}=z^{2}$ has only the trivial solutions?
(c) Describe a process which gives infinitely many primitive solutions to the system of Diophantine equations $a^{2}+b^{2}=c^{2}$ and $a-b=17$.

2. Gaussian Integers

(a) Find the greatest common divisor of the Gaussian integers $\alpha=23+11 \sqrt{-1}$ and $\beta=26$. Find Gaussian integers γ and λ such that $\operatorname{gcd}(\alpha, \beta)=\gamma \alpha+\lambda \beta$. Find the prime factorization of α and β.
(b) Find the number of solutions of the Diophantine equations $x^{2}+y^{2}=36^{6}$ and $x^{2}+y^{2}=20^{13}$.
(c) Determine all solutions to the Diophantine equation $x^{2}+y^{2}=z^{2}$ such that $\operatorname{gcd}(x, y, z)=1$ (using the arithmetic of Gaussian integers).

3. Arithmetic in Quadratic Fields

(a) Recall that $I_{d}=\{\alpha \in \mathbb{Q}(\sqrt{d}): \operatorname{Tr}(\alpha), \mathrm{N}(\alpha) \in \mathbb{Z}\}$ for some square free integer d. Show that I_{d} is a subring of complex numbers.
(b) Determine the set of units in rings I_{3} and I_{-3}.
(c) Let α, β be non-zero elements of I_{d} where d is a square free integer. If α divides β, then show that $N(\alpha)$ divides $N(\beta)$. Show that the converse does not hold for any value of d.
(d) Determine all solutions of the Diophantine equation $x^{2}-17 y^{2}=19$.

4. Factorization Theory in Quadratic Fields

(a) Show that the Diophantine equation $x^{2}+13 y^{2}=73^{73}$ has no solutions.
(b) Show that the ring $I_{-2}=\mathbb{Z}[\sqrt{-2}]$ is a PID. Show that a prime p splits in I_{-2} if and only if $p \equiv 1,3(\bmod 8)$. Find the number of solutions to the Diophantine equation $x^{2}+2 y^{2}=55^{m}$ for all positive integers m.
(c) Let $p \neq 2,5$ be a prime number in \mathbb{Z}. Show that $(p)=\mathfrak{p p}^{\prime}$ in I_{-5} if and only if $p \equiv 1,3,7,9(\bmod 20)$. You are given that $\left|C l\left(I_{-5}\right)\right|=2$ and \mathfrak{p} is principal if and only if $p \equiv 1,9(\bmod 20)$. Find the number of solutions to each of the Diophantine equations $x^{2}+5 y^{2}=m^{4}$ where $m \in\{7,21,41,123,2013\}$.
(d) Show that the class group $C l\left(I_{-6}\right)$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$. Find two distinct non-principal prime ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subset I_{-6}$ and show that $\mathfrak{p}_{1} \sim \mathfrak{p}_{2}$.
(e) You are given that $C l\left(I_{-14}\right) \cong \mathbb{Z} / 4 \mathbb{Z}$. Find the number of solutions to the Diophantine equation $x^{2}+14 y^{2}=p^{12}$ for $p \in\{7,13,23\}$.

