Name and Surname:
Student Number:
Math 366 - Spring 2013 - METU

Quiz 6

(1) Let $w=\sqrt{-13}$. Consider the ring of integers $I_{-13}=\mathbb{Z} \oplus w \mathbb{Z}$ of the imaginary quadratic field $\mathbb{Q}(w)$.

- Is $(3,1+w)$ a proper ideal of I_{-13} ?

Note that $3 \cdot 5-(1+w) \cdot(1-w)=1 \in(3,1+w)$. Thus it is not a proper ideal.

- Is (2) a prime ideal of I_{-13} ?

Neither $1+w$, nor $1-w$ is an element of the ideal (2). However the product of these two elements is 14 . Since 14 is an element of the ideal (2), it is not prime.

- Show that $\mathfrak{a}=(2,1+w)$ is not principal.

Assume otherwise. Then there exists $\alpha=x+y w$ in I_{-13} such that $\mathfrak{a}=(\alpha)$. It follows that $2=\alpha \beta_{1}$ and $1+w=\alpha \beta_{2}$ for some $\beta_{1}, \beta_{2} \in I_{-13}$. Comparing the norms we see that $N(\alpha) \mid \operatorname{gcd}(4,14)=2$. On the other hand $N(\alpha)=x^{2}+13 y^{2}$. It follows that $N(\alpha)=1$ and α is a unit. One can show that this is a contradiction.

- Let $\mathfrak{b}=(7,1+w)$. Determine if the ideals $\mathfrak{a}^{2}, \mathfrak{b}^{2}, \mathfrak{a b}$ principal or not.

It is trivial to check that $\mathfrak{a}^{2}=(2), \mathfrak{b}^{2}=(6-w)$ and $\mathfrak{a b}=(1+w)$. Thus each one is a principal ideal. These also follow from a deeper fact that the class group of I_{-13} is of order 2 and generated by the class $[\mathfrak{a}]$ or $[\mathfrak{b}]$.

- Show that $\mathfrak{a} \sim \mathfrak{b}$. Can \mathfrak{b} be principal?

Choose $\alpha=7$ and $\beta=1+w$. Then $\alpha \mathfrak{a}=\beta \mathfrak{b}$. We conclude by definition that $\mathfrak{a} \sim \mathfrak{b}$. Since \mathfrak{a} is not principal, \mathfrak{b} is not principal either.

