Name and Surname: Student Number:

Math 366 - Spring 2013 - METU

Quiz 6

(1) Let $w = \sqrt{-13}$. Consider the ring of integers $I_{-13} = \mathbb{Z} \oplus w\mathbb{Z}$ of the imaginary quadratic field $\mathbb{Q}(w)$.

- Is (3, 1 + w) a proper ideal of I_{-13} ? Note that $3 \cdot 5 - (1 + w) \cdot (1 - w) = 1 \in (3, 1 + w)$. Thus it is not a proper ideal.
- Is (2) a prime ideal of I_{-13} ?

Neither 1 + w, nor 1 - w is an element of the ideal (2). However the product of these two elements is 14. Since 14 is an element of the ideal (2), it is not prime.

• Show that $\mathfrak{a} = (2, 1 + w)$ is not principal.

Assume otherwise. Then there exists $\alpha = x + yw$ in I_{-13} such that $\mathfrak{a} = (\alpha)$. It follows that $2 = \alpha\beta_1$ and $1 + w = \alpha\beta_2$ for some $\beta_1, \beta_2 \in I_{-13}$. Comparing the norms we see that $N(\alpha) | \gcd(4, 14) = 2$. On the other hand $N(\alpha) = x^2 + 13y^2$. It follows that $N(\alpha) = 1$ and α is a unit. One can show that this is a contradiction.

• Let $\mathfrak{b} = (7, 1 + w)$. Determine if the ideals $\mathfrak{a}^2, \mathfrak{b}^2, \mathfrak{a}\mathfrak{b}$ principal or not.

It is trivial to check that $\mathfrak{a}^2 = (2)$, $\mathfrak{b}^2 = (6-w)$ and $\mathfrak{ab} = (1+w)$. Thus each one is a principal ideal. These also follow from a deeper fact that the class group of I_{-13} is of order 2 and generated by the class $[\mathfrak{a}]$ or $[\mathfrak{b}]$.

• Show that $\mathfrak{a} \sim \mathfrak{b}$. Can \mathfrak{b} be principal?

Choose $\alpha = 7$ and $\beta = 1 + w$. Then $\alpha \mathfrak{a} = \beta \mathfrak{b}$. We conclude by definition that $\mathfrak{a} \sim \mathfrak{b}$. Since \mathfrak{a} is not principal, \mathfrak{b} is not principal either.