Name and Surname:
Student Number:
Math 366 - Spring 2013 - METU

Quiz 5

(1) Consider $I_{5}=\{\alpha \in \mathbb{Q}(\sqrt{5}): \operatorname{Tr}(\alpha), N(\alpha) \in \mathbb{Z}\}$. Find an element $w \in \mathbb{Q}(\sqrt{5})$ such that $I_{5}=\{a+b w: a, b \in \mathbb{Z}\}$.

Solution: Let $\alpha=r+s \sqrt{5}$ be an element of I_{5} where r and s are rational numbers. From the definition of I_{5}, it is easy to see that $\operatorname{Tr}(\alpha)=2 r$ must be an integer. As a result there exists an integer a such that $r=a / 2$. Since $\mathrm{N}(\alpha)=r^{2}-5 s^{2}$ is also an integer, $s=b / 2$ for some integer b. Observe that $\mathrm{N}(\alpha)=\left(a^{2}-5 b^{2}\right) / 4$ is an integer if and only if $a \equiv b$ $(\bmod 2)$. Thus $I_{5}=\{(a+b \sqrt{5}) / 2: a \equiv b(\bmod 5)\}$. It is now easy to see that we can choose $w=(1+\sqrt{5}) / 2$ so that the result holds.
(2) Show that $\alpha_{1}=1+\sqrt{2}$ and $\alpha_{2}=1-\sqrt{2}$ are linearly independent over rational numbers. Express $\alpha=4+11 \sqrt{2}$ in terms of the basis $\left\{\alpha_{1}, \alpha_{2}\right\}$.

Solution: Suppose that $c_{1} \alpha_{1}+c_{2} \alpha_{2}=0$ for some rational numbers c_{1} and c_{2}. It follows that $\left(c_{1}+c_{2}\right) \cdot 1+\left(c_{1}-c_{2}\right) \cdot \sqrt{2}=0$. Since $\sqrt{2}$ is not a rational number, we must have $c_{1}+c_{2}=0$ and $c_{1}-c_{2}=0$. Therefore $c_{1}=c_{2}=0$ and we conclude that α_{1} and α_{2} are linearly independent. Since $\left\{\alpha_{1}, \alpha_{2}\right\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q}, there must exist rational numbers r_{1} and r_{2} such that $\alpha=r_{1} \alpha_{1}+r_{2} \alpha_{2}$. From this equality, we obtain the system of equations $r_{1}+r_{2}=4$ and $r_{1}-r_{2}=11$. Solving for r_{1} and r_{2}, we find that $\alpha=\frac{15}{2} \alpha_{1}-\frac{7}{2} \alpha_{2}$.

