Name and Surname: Student Number:

Math 366 - Spring 2013 - METU

Quiz 4

(1) Let α, β be non-zero Gaussian integers. If α divides β , then show that $N(\alpha)$ divides $N(\beta)$. Does the converse hold? (Hint: Find Gaussian integers α and β such that $N(\gcd(\alpha, \beta)) \neq \gcd(N(\alpha), N(\beta))$.)

Solution: If α divides β then there exists a Gaussian integer γ such that $\beta = \alpha \gamma$. Comparing the norms of both sides, we see that $N(\beta) = N(\alpha)N(\gamma)$. We conclude that $N(\alpha)$ divides $N(\beta)$. The converse is not true. Pick $\alpha = 2 + i$ and $\beta = 2 - i$. Then $N(\alpha)$ divides $N(\beta)$ since they are both equal to five. On the other hand α does not divide β since $\beta/\alpha = 3/5 - 4/5i$.

(2) Let α, β be non-zero Gaussian integers. Show that $N(\operatorname{gcd}(\alpha, \beta))|\operatorname{gcd}(N(\alpha), N(\beta))$.

Solution: Observe that $N(\text{gcd}(\alpha, \beta))$ divides $N(\alpha)$ and $N(\beta)$ by the previous question. Therefore $N(\gamma)$ divides the greatest common divisor of $N(\alpha)$ and $N(\beta)$.

(3) Find the greatest common divisor of Gaussian integers $\alpha = 17 + i$ and $\beta = 10$. Use the inverse division algorithm in order to determine Gaussian integers η and λ such that $gcd(\alpha, \beta) = \alpha \eta + \beta \lambda$.

Solution: Let us apply the division algorithm to find the greatest common divisor of α and β .

$$\alpha = \beta \cdot 1 + (7+i) \beta = (7+i) \cdot 1 + (3-i) 7+i = (3-i) \cdot (2+i) + 0$$

Thus $gcd(\alpha, \beta) = 3 - i$. Now we find η and λ .

$$gcd(\alpha, \beta) = \beta - (7 + i)$$
$$= \beta - (\alpha - \beta)$$
$$= (-1)\alpha + 2\beta.$$

We can pick $\eta = -1$ and $\lambda = 2$.