Name and Surname:
Student Number:

Math 366 - Spring 2013 - METU

Quiz 4

(1) Let α, β be non-zero Gaussian integers. If α divides β, then show that $N(\alpha)$ divides $N(\beta)$. Does the converse hold? (Hint: Find Gaussian integers α and β such that $N(\operatorname{gcd}(\alpha, \beta)) \neq \operatorname{gcd}(N(\alpha), N(\beta))$.

Solution: If α divides β then there exists a Gaussian integer γ such that $\beta=\alpha \gamma$. Comparing the norms of both sides, we see that $N(\beta)=N(\alpha) N(\gamma)$. We conclude that $N(\alpha)$ divides $N(\beta)$. The converse is not true. Pick $\alpha=2+i$ and $\beta=2-i$. Then $N(\alpha)$ divides $N(\beta)$ since they are both equal to five. On the other hand α does not divide β since $\beta / \alpha=3 / 5-4 / 5 i$.
(2) Let α, β be non-zero Gaussian integers. Show that $N(\operatorname{gcd}(\alpha, \beta)) \mid \operatorname{gcd}(N(\alpha), N(\beta))$.

Solution: Observe that $N(\operatorname{gcd}(\alpha, \beta))$ divides $N(\alpha)$ and $N(\beta)$ by the previous question. Therefore $N(\gamma)$ divides the greatest common divisor of $N(\alpha)$ and $N(\beta)$.
(3) Find the greatest common divisor of Gaussian integers $\alpha=17+i$ and $\beta=10$. Use the inverse division algorithm in order to determine Gaussian integers η and λ such that $\operatorname{gcd}(\alpha, \beta)=\alpha \eta+\beta \lambda$.

Solution: Let us apply the division algorithm to find the greatest common divisor of α and β.

$$
\begin{aligned}
\alpha & =\beta \cdot 1+(7+i) \\
\beta & =(7+i) \cdot 1+(3-i) \\
7+i & =(3-i) \cdot(2+i)+0
\end{aligned}
$$

Thus $\operatorname{gcd}(\alpha, \beta)=3-i$. Now we find η and λ.

$$
\begin{aligned}
\operatorname{gcd}(\alpha, \beta) & =\beta-(7+i) \\
& =\beta-(\alpha-\beta) \\
& =(-1) \alpha+2 \beta .
\end{aligned}
$$

We can pick $\eta=-1$ and $\lambda=2$.

