Name and Surname: Student Number:

Math 366 - Spring 2013 - METU

Quiz 3

(1) You are given the following table which includes the approximate values of $ne = n \cdot \exp(1)$ for integers $1 \le n \le 9$ with an accuracy of 3 decimal places. Using this table, find integers p and q such that $1 \le q \le 10$ and |e - p/q| < 1/(10q).

n	1	2	3	4	5	6	7	8	9
ne	2.718	5.436	8.154	10.873	13.591	16.309	19.027	21.746	24.464

Solution: Note that the first decimal place of entries in m = 1 and n = 8 are the same. Choose q = n - m = 7 and p = [ne] - [me] = 19. Then |7e - 19| < 1/10. Therefore |e - 19/7| < 1/70 as required.

(2) (a) What is the fundamental solution of the equation $x^2 - dy^2 = 1$. Explain why this definition makes sense. (b) Find the fundamental solution (x_1, y_1) of $x^2 - 6y^2 = 1$. Determine (x_3, y_3) .

Solution: (a) The fundamental solution is the positive solution (x_1, y_1) of $x^2 - dy^2 = 1$ such that $x_1 + y_1\sqrt{d}$ is minimal. This is possible since the condition $x + y\sqrt{d} \leq M$ implies that $x \leq M$ and $y \leq M$. (b) Observe that (5,2) is a solution of the equation $x^2 - 6y^2 = 1$. We verify that there is no other solution with x < 5 or y < 2. Therefore the fundamental solution (x_1, y_1) is (5,2). We compute that $(5 + 2\sqrt{6})^3 = 485 + 198\sqrt{6}$. Thus $(x_3, y_3) = (485, 198)$.

(3) The system of equations $a^2 + b^2 = c^2$ and |a - b| = 7 has non-trivial solutions such as (5, 12, 13), (8, 15, 17). Find another such solution such that c is not divisible by 7.

Solution: We want to find a primitive solution of the equation $a^2 + b^2 = c^2$ such that |a - b| = 7. Without loss of generality, we have $a = m^2 - n^2$ and b = 2mn for some relatively prime positive integers m and n. In other words

$$|m^{2} - n^{2} - 2mn| = |(m - n)^{2} - 2n^{2}| = 7.$$

Set u = m - n and v = n and look for solutions of the equation $u^2 - 2v^2 = 7$ or $u^2 - 2v^2 = -7$. It is easy to see that (u, v) = (3, 1) and (u, v) = (1, 2) are solutions of these equations respectively. In order to find other solutions we multiply $3 + \sqrt{2}$ and $1 + 2\sqrt{2}$ with the quantity $3 + 2\sqrt{2}$ which corresponds to the fundamental solution of the Pell equation $u^2 - 2v^2 = 1$.

	(u,v)	(m,n)	(a, b, c)
$(3+\sqrt{2})\cdot(3+2\sqrt{2})^0$	(3,1)	(4, 1)	(15, 8, 17)
$(3+\sqrt{2})\cdot(3+2\sqrt{2})^1$	(13,9)	(22, 9)	(403, 396, 565)
$(1+2\sqrt{2}) \cdot (3+2\sqrt{2})^0$	(1,2)	(3, 2)	(5, 12, 13)
$(1+2\sqrt{2}) \cdot (3+2\sqrt{2})^1$	(11, 8)	(19, 8)	(297, 304, 425)