Name and Surname:
Student Number:
Math 366 - Spring 2013 - METU

Quiz 3

(1) You are given the following table which includes the approximate values of $n e=$ $n \cdot \exp (1)$ for integers $1 \leq n \leq 9$ with an accuracy of 3 decimal places. Using this table, find integers p and q such that $1 \leq q \leq 10$ and $|e-p / q|<1 /(10 q)$.

n	1	2	3	4	5	6	7	8	9
$n e$	2.718	5.436	8.154	10.873	13.591	16.309	19.027	21.746	24.464

Solution: Note that the first decimal place of entries in $m=1$ and $n=8$ are the same. Choose $q=n-m=7$ and $p=[n e]-[m e]=19$. Then $|7 e-19|<1 / 10$. Therefore $|e-19 / 7|<1 / 70$ as required.
(2) (a) What is the fundamental solution of the equation $x^{2}-d y^{2}=1$. Explain why this definition makes sense. (b) Find the fundamental solution $\left(x_{1}, y_{1}\right)$ of $x^{2}-6 y^{2}=1$. Determine $\left(x_{3}, y_{3}\right)$.

Solution: (a) The fundamental solution is the positive solution $\left(x_{1}, y_{1}\right)$ of $x^{2}-d y^{2}=1$ such that $x_{1}+y_{1} \sqrt{d}$ is minimal. This is possible since the condition $x+y \sqrt{d} \leq M$ implies that $x \leq M$ and $y \leq M$. (b) Observe that $(5,2)$ is a solution of the equation $x^{2}-6 y^{2}=1$. We verify that there is no other solution with $x<5$ or $y<2$. Therefore the fundamental solution $\left(x_{1}, y_{1}\right)$ is $(5,2)$. We compute that $(5+2 \sqrt{6})^{3}=485+198 \sqrt{6}$. Thus $\left(x_{3}, y_{3}\right)=(485,198)$.
(3) The system of equations $a^{2}+b^{2}=c^{2}$ and $|a-b|=7$ has non-trivial solutions such as $(5,12,13),(8,15,17)$. Find another such solution such that c is not divisible by 7 .

Solution: We want to find a primitive solution of the equation $a^{2}+b^{2}=c^{2}$ such that $|a-b|=7$. Without loss of generality, we have $a=m^{2}-n^{2}$ and $b=2 m n$ for some relatively prime positive integers m and n. In other words

$$
\left|m^{2}-n^{2}-2 m n\right|=\left|(m-n)^{2}-2 n^{2}\right|=7 .
$$

Set $u=m-n$ and $v=n$ and look for solutions of the equation $u^{2}-2 v^{2}=7$ or $u^{2}-2 v^{2}=-7$. It is easy to see that $(u, v)=(3,1)$ and $(u, v)=(1,2)$ are solutions of these equations respectively. In order to find other solutions we multiply $3+\sqrt{2}$ and $1+2 \sqrt{2}$ with the quantity $3+2 \sqrt{2}$ which corresponds to the fundamental solution of the Pell equation $u^{2}-2 v^{2}=1$.

	(u, v)	(m, n)	(a, b, c)
$(3+\sqrt{2}) \cdot(3+2 \sqrt{2})^{0}$	$(3,1)$	$(4,1)$	$(15,8,17)$
$(3+\sqrt{2}) \cdot(3+2 \sqrt{2})^{1}$	$(13,9)$	$(22,9)$	$(403,396,565)$
$(1+2 \sqrt{2}) \cdot(3+2 \sqrt{2})^{0}$	$(1,2)$	$(3,2)$	$(5,12,13)$
$(1+2 \sqrt{2}) \cdot(3+2 \sqrt{2})^{1}$	$(11,8)$	$(19,8)$	$(297,304,425)$

