Name and Surname:
Student Number:
Math 366 - Spring 2013 - METU

Quiz 2

(1) Does there exist infinitely many triples satisfying the equation $a^{2}+b^{2}=c^{2}$ such that $0<a<b<c$ and $c-b=1$? Same question with $b-a=1$?

Solution: Note that $a^{2}=c^{2}-b^{2}=(c+b)(c-b)$. Choosing $c+b=\square$, square of an odd integer, and $c-b=1$, we obtain several solutions to $a^{2}+b^{2}=c^{2}$ with required property. In order to parametrize such solutions let us set $c+b=(2 n+1)^{2}$ for some $n \in \mathbb{N}$. Then $c=2 n^{2}+2 n+1, b=2 n^{2}+2 n$ and $a=2 n+1$ for $n \in \mathbb{N}$.

Now let us consider the same question with condition $b-a=1$. We have two cases, b is either even or odd. If b is even then, the parametrization $a=m^{2}-n^{2}, b=2 m n, c=$ $m^{2}-n^{2}$ gives an infinite family of solutions. We want to find integers m, n such that $b-a=2 m n-m^{2}+n^{2}=1$. Note that this equation becomes $u^{2}-2 v^{2}=1$ under the substitution $u=n+m, v=m$. This last equation is a Pell's equation which has infinitely many solutions. These solutions are given by $(3+2 \sqrt{2})^{n}=u_{n}+v_{n} \sqrt{2}$. For each $\left(u_{i}, v_{i}\right)$ we obtain a different Pythagorean triple with consecutive legs. For example $\left(u_{2}, v_{2}\right)=(17,12)$ and therefore $(m, n)=(12,5)$. We find that $a=119, b=120, c=169$. The other case, b odd, is similar.
(2) Consider the Diophantine equation $2\left(x^{2}+y^{2}\right)=z^{2}$. A quick computer search gives the table below which includes the first few solutions with $x=1$. Note that other solutions can be obtained by multiplying each variable by a fixed integer or switching x and y.

x	y	z
1	1	2
1	7	10
1	41	58
1	239	338
1	1393	1970
1	8119	11482

(a) Write down a parametrization which gives an infinite family of solutions.
(b) Does there exist infinitely many solutions with $x=1$?

Hint: Use the first question.

Solution: Suppose that $\operatorname{gcd}(x, y, z)=1$. It follows that x, y are odd and z is even. It is easy to see that $\left(1^{2}+1^{2}\right) \cdot\left(x^{2}+y^{2}\right)=(x-y)^{2}+(x+y)^{2}$. Consider the equation $(x-y)^{2}+(x+y)^{2}=z^{2}$. Note that $\operatorname{gcd}(x-y, x+y, z)=2$. Thus we have $x-y=$ $2\left(m^{2}-n^{2}\right), x+y=4 m n, z=2\left(m^{2}+n^{2}\right)$ for some integers m, n relatively prime. As a result $x=2 m n+m^{2}-n^{2}, y=2 m n-m^{2}+n^{2}, z=2\left(m^{2}+n^{2}\right)$ gives an infinite family of solutions to the equation $2\left(x^{2}+y^{2}\right)=z^{2}$.

Now let us focus on the case with $x=1$. This means that $2 m n+m^{2}-n^{2}=1$. If we set $u=m+n$ and $v=n$, then it is equivalent to solve $u^{2}-2 v^{2}=1$. This is a Pell's equation with infinitely many solutions. For example using the solution $(17,12)$, we obtain $x=1, y=239, z=338$.

